
Cutting Planes for Mixed Integer
Programming

by
ANDREA QUALIZZA

Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in

Industrial Administration
(Algorithms, Combinatorics and Optimization)

Dissertation Committee:
Egon Balas (Chair)
Gérard Cornuéjols
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Abstract

My work focuses on cutting planes technology in Mixed Integer Programming. I explore
novel classes of valid linear inequalities to strengthen linear relaxations of both Linear and
Nonlinear Mixed Integer problems. My dissertation consists of three chapters that investigate
theoretically and computationally the families of cuts considered.

The first chapter is based on joint work with Prof. Pietro Belotti and Prof. François
Margot. We study linear relaxations of Quadratically Constrained Quadratic Programs.
The proposed relaxations are models with both semidefinite constraints (PSD) and linear
constraints given by the Reformulation Linearization Technique (RLT). It is known from
the literature (Anstreicher, 2007) that PSD and RLT used together yield better bounds
than each technique used separately. We adopt a linear outer-approximation of the PSD
cone, and we use exclusively linear programming tools to enforce the PSD condition via a
cutting plane approach in the lifted space containing the Yij = xixj variables. We study new
classes of valid linear inequalities and we test their effectiveness empirically. These include
sparse PSD cuts and cuts derived from principal minors. Computational results based on
instances from the GLOBALLib and Boxed Constrained Quadratic Programs show that this
approach yields better bounds than using solely the standard PSD cuts on top of the RLT
inequalities. The C++ code developed for this study has been included in Coin-OR as part
of the Couenne project (an exact solver for MINLPs).

In the second chapter I present a work closely related to the recent developments in
the area of “cuts from multiple rows of the simplex tableau” (Andersen et al., 2007). This
chapter is based on joint work with Prof. Egon Balas. We generate intersection cuts from
lattice-free convex sets as lift-and-project cuts from multiple-term disjunctions. We use the
concept of “Disjunctive Hull” defined for a Mixed Integer Program at a fractional vertex v
of its linear relaxation P as the convex hull of points in P satisfying all basic disjunctions
that cut off v but no integer point. We examine the relationship between the Disjunctive
Hull and the Integer Hull and we give procedures to generate inequalities for the Integer
Hull derived from the Cut Generating Linear Program associated to the Disjunctive Hull.
Strengthening techniques based on coefficient modularization and monoidal strengthening
are also discussed. In this chapter we also analyze the case of 0-1 programming which has
not been covered in the literature. Our framework applies to this setting with minor changes
and produces valid families of cuts for the 0-1 case but invalid for general integer programs.
These cuts include the triangle, quadrilateral, split cuts for the MIP case, and cuts from
cones and truncated cones for the 0-1 setting. Moreover we run an experiment in which we
separate two families of non facet defining cuts: we consider cuts from fixed shape triangles
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of type 1 and conic disjunctions having the apex at one vertex of the unit cube and two
extreme rays, each containing an additional vertex of the cube. In practice, in order to
match the strength of the non facet defining inequalites, a large number of facet defining
inequalites is typically needed. Triangles of type 1 produce a consistent improvement over
the Gomory cuts, as shown in experiments on the MIPLIB 3 binary instances.

In the third chapter I present a theoretical result on strengthening valid inequalities for
Mixed Integer Linear Programs. This chapter is also based on joint work with Prof. Egon
Balas. There are two distinct strengthening methods for disjunctive cuts; they differ in
the way they modularize the coefficients associated to integer constrained variables. We
introduce a new variant of one of these methods, the monoidal cut strengthening procedure
(Balas and Jeroslow, 1980), based on the paradox that sometimes weakening a disjunction
helps the strengthening procedure and results in sharper cuts. We first derive a general result
that applies to cuts from disjunctions with any number of terms. It defines the coefficients of
the cut in a way that takes advantage of the option of adding new terms to the disjunction.
We then specialize this result to the case of split cuts, in particular Gomory Mixed Integer
cuts, and to intersection cuts from multiple rows of a simplex tableau. In both instances
we give conditions for the new cuts to have stronger coefficients than the cuts obtained by
either of the two currently known strengthening procedures.

ii



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Professor
Egon Balas, for his continuous guidance and encouragement throughout my studies. He has
been a great source of inspiration for me and I really feel honored being advised by such a
great person.

I am indebted to Professor François Margot for his help and advice on the work included in
the first chapter and for his insightful comments to improve the second and third chapters.
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Chapter 1

Linear Programming Relaxations for
QCQPs

The work presented in this chapter has been published as “Linear Programming Relaxations
of Quadratically Constrained Quadratic Programs” by A. Qualizza, P. Belotti and F. Margot
in Mixed Integer Nonlinear Programming, IMA Volume Series, Springer, 2012.

1.1 Introduction

Many combinatorial problems have Linear Programming (LP) relaxations that are com-
monly used for their solution through branch-and-cut algorithms. Some of them also have
stronger relaxations involving positive semidefinite (PSD) constraints. In general, stronger
relaxations should be preferred when solving a problem, thus using these PSD relaxations is
tempting. However, they come with the drawback of requiring a Semidefinite Programming
(SDP) solver, creating practical difficulties for an efficient implementation within a branch-
and-cut algorithm. Indeed, a major weakness of current SDP solvers compared to LP solvers
is their lack of efficient warm starting mechanisms. Another weakness is solving problems
involving a mix of PSD constraints and a large number of linear inequalities, as these linear
inequalities put a heavy toll on the linear algebra steps required during the solution process.

In this chapter, we investigate LP relaxations of PSD constraints with the aim of cap-
turing most of the strength of the PSD relaxation, while still being able to use an LP solver.
The LP relaxation we obtain is an outer-approximation of the PSD cone, with the typical
convergence difficulties when aiming to solve problems to optimality. We thus do not cast
this work as an efficient way to solve PSD problems, but we aim at finding practical ways
to approximate PSD constraints with linear ones.

We restrict this study exclusively to Quadratically Constrained Quadratic Programming
(QCQP). A QCQP problem with variables x ∈ Rn and y ∈ Rm is a problem of the form

max xTQ0x+ aT0 x+ bT0 y
s.t.

xTQkx+ aTk x+ bTk y ≤ ck for k = 1, 2, . . . , p
lxi
≤ xi ≤ uxi

for i = 1, 2, . . . , n
lyj ≤ yj ≤ uyj for j = 1, 2, . . . ,m

(1.1)
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where, for k = 0, 1, 2, . . . , p, Qk is a rational symmetric n × n-matrix, ak is a rational n-
vector, bk is a rational m-vector, and ck ∈ Q. Moreover, the lower and upper bounds lxi

, uxi

for i = 1, . . . , n, and lyj , uyj for j = 1, . . . ,m are all finite. If Q0 is negative semidefinite and
Qk is positive semidefinite for each k = 1, 2, . . . , p, problem (1.1) is convex and thus easy to
solve. Otherwise, the problem is NP-hard [23].

An alternative lifted formulation for (1.1) is obtained by replacing each quadratic term
xixj with a new variable Xij. Let X = xxT be the matrix with entry Xij corresponding to
the quadratic term xixj. For square matrices A and B of the same dimension, let A • B
denote the Frobenius inner product of A and B, i.e., the trace of ATB. Problem (1.1) is then
equivalent to

max Q0 •X + aT0 x+ bT0 y
s.t.

Qk •X + aTk x+ bTk y ≤ ck for k = 1, 2, . . . , p
lxi
≤ xi ≤ uxi

for i = 1, 2, . . . , n
lyj ≤ yj ≤ uyj for j = 1, 2, . . . ,m
X = xxT .

(1.2)

The difficulty in solving problem (1.2) lies in the non-convex constraint X = xxT . A
relaxation, dubbed PSD, that is possible to solve relatively efficiently is obtained by relaxing
this constraint to the requirement thatX−xxT be positive semidefinite, i.e., X−xxT � 0. An
alternative relaxation of (1.1), dubbed RLT , is obtained by the Reformulation Linearization
Technique [53], using products of pairs of original constraints and bounds and replacing
nonlinear terms with new variables.

Anstreicher [3] compares the PSD and RLT relaxations on a set of quadratic problems
with box constraints, i.e., QCQP problems with p = 0 and with all the variables bounded
between 0 and 1. He shows that the PSD relaxations of these instances are fairly good and
that combining the PSD and RLT relaxations yields significantly tighter relaxations than
either of the PSD or RLT relaxations. The drawback of combining the two relaxations is
that current SDP solvers have difficulties to handle the large number of linear constraints of
the RLT .

Our aim is to solve relaxations of (1.1) using exclusively linear programming tools. The
RLT is readily applicable for our purposes, while the PSD technique requires a cutting
plane approach as described in Section 1.2.

In Section 1.3 we consider several families of valid cuts. The focus is essentially on
capturing the strength of the positive semidefinite condition using standard cuts [54], and
some sparse versions of these.

We analyze empirically the strength of the considered cuts on instances taken from GL-
OBALLib [36] and quadratic programs with box constraints described in more details in
the next section. Implementation and computational results are presented in Section 1.4.
Finally, Section 1.5 summarizes the results and gives possible directions for future research.

6



1.2 Relaxations of QCQP problems

A typical approach to get bounds on the optimal value of a QCQP is to solve a convex
relaxation. Since our aim is to work with linear relaxations, the first step is to linearize (1.2)
by relaxing the last constraint to X = XT . We thus get the Extended formulation

max Q0 •X + aT0 x+ bT0 y
s.t.

Qk •X + aTk x+ bTk y ≤ ck for k = 1, 2, . . . , p
lxi
≤ xi ≤ uxi

for i = 1, 2, . . . , n
lyj ≤ yj ≤ uyj for j = 1, 2, . . . ,m
X = XT .

(1.3)

(1.3) is a Linear Program with n(n+3)/2+m variables and the same number of constraints
as (1.1). Note that the optimal value of (1.3) is usually a weak upper bound for (1.1), as no
constraint links the values of the x and X variables. Two main approaches for doing that
have been proposed and are based on relaxations of the last constraint of (1.2), namely

X − xxT = 0. (1.4)

They are known as the Positive Semidefinite (PSD) relaxation and the Reformulation
Linearization Technique (RLT ) relaxation.

1.2.1 PSD Relaxation

As X − xxT = 0 implies X − xxT < 0, using this last constraint yields a convex relaxation
of (1.1). This is the approach used in [54, 56, 57, 59], among others.

Moreover, using Schur’s complement

X − xxT < 0 ⇔
(
1 xT

x X

)
< 0,

and defining

Q̃k =

(
−ck aTk /2
ak/2 Qk

)
, X̃ =

(
1 xT

x X

)
,

we can write the PSD relaxation of (1.1) in the compact form

max Q̃0 • X̃ + bT0 y
s.t.

Q̃ • X̃ + bTk y ≤ 0 k = 1, 2, . . . , p
lxi
≤ xi ≤ uxi

i = 1, 2, . . . , n
lyj ≤ yj ≤ uyj j = 1, 2, . . . ,m

X̃ < 0.

(1.5)

This is a positive semidefinite problem with linear constraints. It can thus be solved in
polynomial time using interior point algorithms. (1.5) is tighter than usual linear relaxations
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for problems such as the Maximum Cut, Stable Set, and Quadratic Assignment problems
[61]. All these problems can be formulated as QCQPs. For convenience of notation we refer
to the relaxation (1.5) as PSD.

1.2.2 RLT Relaxation

The Reformulation Linearization Technique [53] can be used to produce a relaxation of (1.1).
It adds linear inequalities to (1.3). These inequalities are derived from the variable bounds
and constraints of the original problem as follows: multiply together two original constraints
or bounds and replace each product term xixj with the variable Xij. For instance, let
xi, xj, i, j ∈ {1, 2, . . . , n} be two variables from (1.1). By taking into account only the four
original bounds xi − lxi

≥ 0, xi − uxi
≤ 0, xj − lxj

≥ 0, xj − uxj
≤ 0, we get the RLT

inequalities
Xij − lxi

xj − lxj
xi ≥ −lxi

lxj
,

Xij − uxi
xj − uxj

xi ≥ −uxi
uxj

,
Xij − lxi

xj − uxj
xi ≤ −lxi

uxj
,

Xij − uxi
xj − lxj

xi ≤ −uxi
lxj

.

(1.6)

Anstreicher [3] observes that, for Quadratic Programs with box constraints, the PSD
and RLT constraints together yield much better bounds than those obtained from the PSD
or RLT relaxations. In this work, we want to capture the strength of both techniques and
generate a Linear Programming relaxation of (1.1).

Notice that the four inequalities above, introduced by McCormick [45], constitute the
convex envelope of the set {(xi, xj, Xij) ∈ R3 : lxi

≤ xi ≤ uxi
, lxj
≤ xj ≤ uxj

, Xij = xixj} as
proven by Al-Khayyal and Falk [1], i.e., they are the tightest relaxation for the single term
Xij.

1.3 Our Framework

While the RLT constraints are linear in the variables in the formulation (1.3) and therefore
can be added directly to (1.3), this is not the case for the PSD constraint. We use a linear
outer-approximation of the PSD relaxation and a cutting plane framework, adding a linear
inequality separating the current solution from the PSD cone.

The initial relaxation we use and the various cuts generated by our separation procedure
are described in more details in the next sections.

1.3.1 Initial Relaxation

Our initial relaxation is the formulation (1.3) together with the O(n2) RLT constraints
derived from the bounds on the variables xi, i = 1, 2, . . . , n. We did not include the RLT
constraints derived from the problem constraints due to their large number and the fact that
we want to avoid the introduction of extra variables for the multivariate terms that occur
when quadratic constraints are multiplied together.
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The bounds [Lij, Uij] for the extended variables Xij are computed as follows:

Lij = min{lxi
lxj

; lxi
uxj

; uxi
lxj

; uxi
uxj
}, ∀i = 1, 2, . . . , n; j = i, . . . , n

Uij = max{lxi
lxj

; lxi
uxj

; uxi
lxj

; uxi
uxj
}, ∀i = 1, 2, . . . , n; j = i, . . . , n.

In addition, equality (1.4) implies Xii ≥ x2
i . We therefore also make sure that Lii ≥ 0.

1.3.2 PSD Cuts

We use the equivalence that a matrix is positive semidefinite if and only if

vT X̃v ≥ 0 for all v ∈ Rn+1 . (1.7)

We can reformulate PSD as the semi-infinite Linear Program

max Q̃0 • X̃ + bT0 y
s.t.

Q̃ • X̃ + bTk y ≤ ck for k = 1, 2, . . . , p
lxi
≤ xi ≤ uxi

for i = 1, 2, . . . , n
lyj ≤ yj ≤ uyj for j = 1, 2, . . . ,m

vT X̃v ≥ 0 for all v ∈ Rn+1.

(1.8)

A practical way to use (1.8) is to adopt a cutting plane approach to separate constraints
(1.7) as done in [54].

Let X̃∗ be an arbitrary point in the space of the X̃ variables. The spectral decomposition
of X̃∗ is used to decide if X̃∗ is in the PSD cone or not. Let the eigenvalues and corresponding
orthonormal eigenvectors of X̃∗ be λk and vk for k = 1, 2, . . . , n, and assume without loss
of generality that λ1 ≤ λ2 ≤ . . . ≤ λn and let t ∈ {0, . . . , n} such that λt < 0 ≤ λt+1. If
t = 0, then all the eigenvalues are non negative and X̃∗ is positive semidefinite. Otherwise,
vTk X̃

∗vk = vTk λkvk = λk < 0 for k = 1, . . . , t. Hence, the valid cut

vTk X̃vk ≥ 0 (1.9)

is violated by X̃∗. Cuts of the form (1.9) are called PSDCUTs in the remainder of the
chapter.

The above procedure has two major weaknesses: First, only one cut is obtained from
eigenvector vk for k = 1, . . . , t, while computing the spectral decomposition requires a non
trivial investment in cpu time, and second, the cuts are usually very dense, i.e. almost all
entries in vvT are nonzero. Dense cuts are frowned upon when used in a cutting plane
approach, as they might slow down considerably the reoptimization of the linear relaxation.

To address these weaknesses, we describe in the next section a heuristic to generate
several sparser cuts from each of the vectors vk for k = 1, . . . , t.
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Sparsify(v, X̃, pctNZ , pctV IOL)

1 minVIOL ← −vT X̃v · pctV IOL

2 maxNZ ← blength[v] · pctNZc
3 w ← v
4 perm ← random permutation of 1 to length[w]
5 for j ← 1 to length[w]
6 do
7 z ← w, z[perm[j]]← 0

8 if −zT X̃z > minV IOL

9 then w ← z
10 if number of non-zeroes in w < maxNZ

11 then output w

Figure 1.1: Sparsification procedure for the PSD cuts

1.3.3 Sparsification of PSD cuts

A simple idea to get sparse cuts is to start with vector w = vk, for k = 1, . . . , t, and
iteratively set to zero some component of w, provided that wT X̃∗w remains sufficiently
negative. If the entries are considered in random order, several cuts can be obtained from
a single eigenvector vk. For example, consider the Sparsify procedure in Figure 1.1, taking
as parameters an initial vector v, a matrix X̃, and two numbers between 0 and 1, pctNZ

and pctV IOL, that control the maximum percentage of nonzero entries in the final vector and
the minimum violation requested for the corresponding cut, respectively. In the procedure,
parameter length[v] identifies the size of vector v.

It is possible to implement this procedure to run in O(n2) if length[v] = n+1: Compute
and update a vector m such that

mj =
n+1∑
i=1

wjwiX̃ij for j = 1, . . . , n+ 1 .

Its initial computation takes O(n2) and its update, after a single entry of w is set to 0, takes
O(n). The vector m can be used to compute the left hand side of the test in step 8 in
constant time given the value of the violation d for the inequality generated by the current
vector w: Setting the entry ` = perm[j] of w to zero reduces the violation by 2m` − w2

` X̃``

and thus the violation of the resulting vector is (d− 2m` + w2
` X̃``).

A slight modification of the procedure is used to obtain several cuts from the same
eigenvector: Change the loop condition in step 5 to consider the entries in perm in cyclical
order, from all possible starting points s in {1, 2 . . . , length[w]}, with the additional condition
that entry s − 1 is not set to 0 when starting from s to guarantee that we do not generate
always the same cut. From our experiments, this simple idea produces collections of sparse
and well-diversified cuts. This is referred to as SPARSE1 in the remainder of the chapter.
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We also consider the following variant of the procedure given in Figure 1.1. Given a
vector w, let X̃[w] be the principal minor of X̃ induced by the indices of the nonzero entries
in w. Replace step 7 with

7. z ← w̄ where w̄ is an eigenvector corresponding to the most negative eigenvalue
of a spectral decomposition of X̃[w], z[perm[j]]← 0.

This is referred to as SPARSE2 in the remainder, and we call the cuts generated by SPARSE1
or SPARSE2 described above Sparse PSD cuts.

Once sparse PSD cuts are generated, for each vector w generated, we can also add
all PSD cuts given by the eigenvectors corresponding to negative eigenvalues of a spectral
decomposition of X̃[w]. These cuts are valid and sparse. They are called Minor PSD cuts
and denoted by MINOR in the following.

An experiment to determine good values for the parameters pctNZ and pctV IOL was per-
formed on the 38 GLOBALLIB instances and 51 BoxQP instances described in Section 1.4.1.
It is run by selecting two sets of three values in [0, 1], {VLOW , VMID, VUP} for pctV IOL and
{NLOW , NMID, NUP} for pctNZ . The nine possible combinations of these parameter values
are used and the best of the nine (Vbest, Nbest) is selected. We then center and reduce the
possible ranges around Vbest and Nbest, respectively, and repeat the operation. The procedure
is stopped when the best candidate parameters are (VMID, NMID) and the size of the ranges
satisfy |VUP − VLOW | ≤ 0.2 and |NUP −NLOW | ≤ 0.1.

In order to select the best value of the parameters, we compare the bounds obtained by
both algorithms after 1, 2, 5, 10, 20, and 30 seconds of computation. At each of these times,
we count the number of times each algorithm outperforms the other by at least 1% and
the winner is the algorithm with the largest number of wins over the 6 clocked times. It is
worth noting that typically the majority of the comparisons end up as ties, implying that
the results are not extremely sensitive to the selected values for the parameters.

For SPARSE1, the best parameter values are pctV IOL = 0.6 and pctNZ = 0.2. For
SPARSE2, they are pctV IOL = 0.6 and pctNZ = 0.4. These values are used in all experiments
using either SPARSE1 or SPARSE2 in the remainder of the chapter.

1.4 Computational Results

In the implementation, we have used the Open Solver Interface (Osi-0.97.1) from COIN-OR
[24] to create and modify the LPs and to interface with the LP solvers ILOG Cplex-11.1. To
compute eigenvalues and eigenvectors, we use the dsyevx function provided by the LAPACK
library version 3.1.1. We also include a cut management procedure to reduce the number
of constraints in the outer approximation LP. This procedure, applied at the end of each
iteration, removes the cuts that are not satisfied with equality by the optimal solution. Note
however that the constraints from the of the initial relaxations are never removed, only
constraints from added cutting planes are possibly removed.

The machine used for the tests is a 64 bit 2.66GHz AMD processor, 64GB of RAM
memory, and Linux kernel 2.6.29. Tolerances on the accuracy of the primal and dual solutions
of the LP solver and LAPACK calls are set to 10−8.
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The set of instances used for most experiments consists of 51 BoxQP instances with at
most 50 variables and the 38 GLOBALLib instances as described in Section 1.4.1.

For an instance I and a given relaxation of it, we define the gap closed by the relaxation
as

100 · RLT −BND

RLT −OPT
, (1.10)

where BND and RLT are the optimal value for the given relaxation and the initial relaxation
respectively, and OPT is either the optimal value of I or the best known value for a feasible
solution. The OPT values are taken from [50].

1.4.1 Instances

Tests are performed on a subset of instances from GLOBALLib [36] and on Box Constrained
Quadratic Programs (BoxQPs) [60]. GLOBALLib contains 413 continuous global optimiza-
tion problems of various sizes and types, such as BoxQPs, problems with complementarity
constraints, and general QCQPs. Following [50], we select 160 instances from GLOBALLib
having at most 50 variables and that can easily be formulated as (1.1). The conversion of
a non-linear expression into a quadratic expression, when possible, is performed by adding
new variables and constraints to the problem. Additionally, bounds on the variables are de-
rived using linear programming techniques and these bound are included in the formulation.
From these 160 instances in AMPL format, we substitute each bilinear term xixj by the new
variable Xij as described for the formulation (1.2). We build two collections of linearized
instances in MPS format, one with the original precision on the coefficients and right hand
side, and the second with 8-digit precision. In our experiments we used the latter.

As observed in [50], using together the SDP and RLT relaxations yields stronger bounds
than those given by theRLT relaxation only for 38 out of 160 GLOBALLib instances. Hence,
we focus on these 38 instances to test the effectiveness of the PSD Cuts and their sparse
versions.

The BoxQP collection contains 90 instances with a number of variables ranging from 20
to 100. Due to time limit constraints and the number of experiments to run, we consider only
instances with a number of variables between 20 to 50, for a total of 51 BoxQP problems.

The converted GLOBALLib and BoxQP instances are available in MPS format from [48].

1.4.2 Effectiveness of each class of cuts

We first compare the effectiveness of the various classes of cuts when used in combination
with the standard PSDCUTs. For these tests, at most 1,000 cutting iterations are performed,
at most 600 seconds are used, and operations are stopped if tailing off is detected. More
precisely, let zt be the optimal value of the linear relaxation at iteration t. The operations
are halted if t ≥ 50 and zt ≥ (1− 0.0001) · zt−50. A cut purging procedure is used to remove
cuts that are not tight at iteration t if the condition zt ≥ (1− 0.0001) · zt−1 is satisfied. On
average in each iteration the algorithm generates n2

2
cuts, of which only n

2
are are kept by

the cut purging procedure and the rest is discarded.
In order to compare two different cutting plane algorithms, we compare the closed gaps

values first after a fixed number of iterations, and second at several given times, for all
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QCQP instances at avail. Comparisons at fixed iterations indicate the quality of the cuts,
irrespective of the time used to generate them. Comparisons at given times are useful if only
limited time is available for running the cutting plane algorithms and a good approximation
of the PSD cone is sought. The closed gaps obtained at a given point are deemed different
only if their difference is at least g% of the initial gap. We report comparisons for g = 1
and g = 5. Comparisons at one point is possible only if both algorithms reach that point.
The number of problems for which this does not happen – because, at a given time, either
result was not available or one of the two algorithms had already stopped, or because either
algorithm had terminated in fewer iterations – is listed in the “inc.” (incomparable) columns
in the tables. For the remaining problems, we report the percentage of problems for which
one algorithm is better than the other and the percentage of problems were they are tied.
Finally, we also report the average improvement in gap closed for the second algorithm over
the first algorithm in the column labeled “impr.”.

Tests are first performed to decide which combination of the SPARSE1, SPARSE2 and
MINOR cuts perform best on average. Based on Tables 1.1 and 1.2 below, we conclude
that using MINOR is useful both in terms of iteration and time, and that the algorithm
using PSDCUT+SPARSE2+MINOR (abbreviated S2M in the remainder) dominates the
algorithm using PSDCUT+SPARSE1+MINOR (abbreviated S1M) both in terms of iteration
and time. Table 1.1 gives the comparison between S1M and S2M at different iterations. S2M
dominates clearly S1M in the very first iteration and after 200 iterations, while after the first
few iterations S1M also manages to obtain good bounds. Table 1.2 gives the comparison
between these two algorithms at different times. For comparisons with g = 1, S1M is better
than S2M only in at most 2.25% of the problems, while the converse varies between roughly
50% (at early times) and 8% (for late times). For g = 5, S2M still dominates S1M in most
cases.

Sparse cuts yield better bounds than using solely the standard PSD cuts. The observed
improvement is around 3% and 5% respectively for SPARSE1 and SPARSE2. When we
are using the MINOR cuts, this value gets to 6% and 8% respectively for each type of
sparsification algorithm used. Table 1.3 compares PSDCUT (abbreviated by S) with S2M.
The table shows that the sparse cuts generated by the sparsification procedures and minor
PSD cuts yield better bounds than the standard cutting plane algorithm at fixed iterations.
Comparisons performed at fixed times, on the other hand, show that considering the whole set
of instances we do not get any improvement in the first 60 to 120 seconds of computation (see
Table 1.4). Indeed S2M initially performs worse than the standard cutting plane algorithm,
but after 60 to 120 seconds, it produces better bounds on average. In Section 1.6 detailed
computational results are given in Tables 1.5 and 1.6 where for each instance we compare
the duality gap closed by S and S2M at several iterations and times. In the latter table the
instances solved in less than 1 seconds are not shown. The initial duality gap is obtained as
in (1.10) as RLT −OPT . We then let S2M run with no time limit until the value s obtained
does not improve by at least 0.01% over ten consecutive iterations. This value s is an upper
bound on the value of the PSD+RLT relaxation. The column “bound” in the tables gives
the value of RLT − s as a percentage of the gap RLT − OPT , i.e. an approximation of
the percentage of the gap closed by the PSD+RLT relaxation. The columns labeled S and
S2M in the tables give the gap closed by the corresponding algorithms at different iterations.

Note that although S2M relies on numerous spectral decomposition computations, most
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of its running time is spent in generating cuts and reoptimization of the LP. For example,
on the BoxQP instances with a time limit of 300 seconds, the average percentage of CPU
time spent for obtaining spectral decompositions is below 21 for instances of size 30, below
15 for instances of size 40 and below 7 for instances of size 50.

1.5 Conclusions

We studied linearizations of the PSD cone based on spectral decompositions. Sparsification
of eigenvectors corresponding to negative eigenvalues is shown to produce useful cuts in
practice, in particular when the minor cuts are used. The goal of capturing most of the
strength of a PSD relaxation through linear inequalities is achieved, although tailing off
occurs relatively quickly. As an illustration of typical behavior of a PSD solver and our
linear outer-approximation scheme, consider the two instances, spar020-100-1 and spar030-
060-1, with respectively 20 and 30 variables. We use the SDP solver SeDuMi and S2M,
keeping track at each iteration of the bound achieved and the time spent. Figure 1.2 and
Figure 1.3 compare the bounds obtained by the two solvers at a given time. For the small
size instance spar020-100-1, we note that S2M converges to the bound value more than
twenty times faster than SeDuMi. In the medium size instance spar030-060-1 we note that
S2M closes a large gap in the first ten to twenty iterations, and then tailing off occurs. To
compute the exact bound, SeDuMi requires 408 seconds while S2M requires 2,442 seconds to
reach the same precision. Nevertheless, for our purposes, most of the benefits of the PSD
constraints are captured in the early iterations.

Two additional improvements are possible. The first one is to use a cut separation
procedure for the RLT inequalities, avoiding their inclusion in the initial LP and managing
them as other cutting planes. This could potentially speed up the reoptimization of the LP.
Another possibility is to use a mix of the S and S2M algorithms, using the former in the
early iterations and then switching to the latter.
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Figure 1.2: Instance spar020-100-1
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Figure 1.3: Instance spar030-060-1
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Table 1.1: Comparison of S1M with S2M at several iterations.

g = 1 g = 5
Iteration S1M S2M Tie S1M S2M Tie inc. impr.

1 7.87 39.33 52.80 1.12 19.1 79.78 0.00 3.21
2 17.98 28.09 53.93 0.00 10.11 89.89 0.00 2.05
3 17.98 19.10 62.92 1.12 7.87 91.01 0.00 1.50
5 12.36 14.61 73.03 3.37 5.62 91.01 0.00 1.77
10 10.11 13.48 76.41 0.00 5.62 94.38 0.00 1.42
15 4.49 13.48 82.03 1.12 6.74 92.14 0.00 1.12
20 1.12 10.11 78.66 1.12 6.74 82.02 10.11 1.02
30 1.12 8.99 79.78 1.12 5.62 83.15 10.11 0.79
50 2.25 6.74 80.90 1.12 4.49 84.28 10.11 0.47
100 0.00 4.49 28.09 0.00 2.25 30.33 67.42 1.88
200 0.00 3.37 15.73 0.00 2.25 16.85 80.90 2.51
300 0.00 2.25 12.36 0.00 2.25 12.36 85.39 3.30
500 0.00 2.25 7.87 0.00 2.25 7.87 89.88 3.85
1000 0.00 2.25 3.37 0.00 2.25 3.37 94.38 7.43

Table 1.2: Comparison of S1M with S2M at several times.

g = 1 g = 5
Time S1M S2M Tie S1M S2M Tie inc. impr.

0.5 3.37 52.81 12.36 0.00 43.82 24.72 31.46 2.77
1 0.00 51.68 14.61 0.00 40.45 25.84 33.71 4.35
2 0.00 47.19 15.73 0.00 39.33 23.59 37.08 5.89
3 1.12 44.94 14.61 0.00 34.83 25.84 39.33 5.11
5 1.12 43.82 15.73 0.00 38.20 22.47 39.33 6.07
10 1.12 41.58 16.85 0.00 24.72 34.83 40.45 4.97
15 2.25 37.08 16.85 1.12 21.35 33.71 43.82 3.64
20 1.12 35.96 16.85 1.12 17.98 34.83 46.07 3.49
30 1.12 28.09 22.48 1.12 16.86 33.71 48.31 2.99
60 1.12 20.23 28.09 0.00 12.36 37.08 50.56 2.62
120 0.00 15.73 32.58 0.00 10.11 38.20 51.69 1.73
180 0.00 13.49 32.58 0.00 5.62 40.45 53.93 1.19
300 0.00 11.24 31.46 0.00 3.37 39.33 57.30 0.92
600 0.00 7.86 24.72 0.00 0.00 32.58 67.42 0.72
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Table 1.3: Comparison of S with S2M at several iterations.

g = 1 g = 5
Iteration S S2M Tie S S2M Tie inc. impr.

1 0.00 76.40 23.60 0.00 61.80 38.20 0.00 10.47
2 0.00 84.27 15.73 0.00 55.06 44.94 0.00 10.26
3 0.00 83.15 16.85 0.00 48.31 51.69 0.00 10.38
5 0.00 80.90 19.10 0.00 40.45 59.55 0.00 10.09
10 1.12 71.91 26.97 0.00 41.57 58.43 0.00 8.87
15 1.12 60.67 38.21 1.12 35.96 62.92 0.00 7.49
20 1.12 53.93 40.45 1.12 29.21 65.17 4.50 6.22
30 1.12 34.83 53.93 0.00 16.85 73.03 10.12 5.04
50 1.12 25.84 62.92 0.00 13.48 76.40 10.12 3.75
100 1.12 8.99 21.35 0.00 5.62 25.84 68.54 5.57
200 0.00 5.62 8.99 0.00 3.37 11.24 85.39 7.66
300 0.00 3.37 7.87 0.00 3.37 7.87 88.76 8.86
500 0.00 3.37 5.62 0.00 3.37 5.62 91.01 8.72
1000 0.00 2.25 0.00 0.00 2.25 0.00 97.75 26.00

Table 1.4: Comparison of S with S2M at several times.

g = 1 g = 5
Time S S2M Tie S S2M Tie inc. impr.

0.5 41.57 17.98 5.62 41.57 17.98 5.62 34.83 -9.42
1 41.57 14.61 5.62 39.33 13.48 8.99 38.20 -8.66
2 42.70 10.11 6.74 29.21 8.99 21.35 40.45 -8.73
3 41.57 8.99 8.99 31.46 6.74 21.35 40.45 -8.78
5 35.96 7.87 15.72 33.71 5.62 20.22 40.45 -7.87
10 34.84 7.87 13.48 30.34 4.50 21.35 43.81 -5.95
15 37.07 5.62 11.24 22.47 2.25 29.21 46.07 -5.48
20 37.07 5.62 8.99 17.98 1.12 32.58 48.32 -4.99
30 30.34 5.62 15.72 11.24 1.12 39.32 48.32 -3.9
60 11.24 12.36 25.84 11.24 2.25 35.95 50.56 -1.15
120 8.99 12.36 24.72 2.25 2.25 41.57 53.93 0.48
180 2.25 14.61 29.21 0.00 4.50 41.57 53.93 1.09
300 0.00 15.73 26.97 0.00 6.74 35.96 57.30 1.60
600 0.00 14.61 13.48 0.00 5.62 22.47 71.91 2.73
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Chapter 2

Cuts from multiple rows of the
simplex tableau

2.1 Introduction

Since 2007 in the context of Integer Linear Programming a new class of valid inequalities
derived from multiple rows of the simplex tableau are being investigated. Andersen, Lou-
veaux, Weismantel and Wolsey study in [2] the geometrical structure of 2 rows of the simplex
tableau corresponding to basic integer constrained variables and they show that there exist
valid cuts which can only be derived using information from the 2 rows simultaneously. Sev-
eral papers further investigate the family of cuts from multiple rows. Cornuéjols and Margot
in [27] present a complete characterization of the facets of a mixed integer linear program
with two integer variables and two constraints. Borozan and Cornuéjols [21] investigate the
relation between minimal valid inequalities and maximal lattice free convex sets. In [14]
Basu et al. study the strength of cuts derived from 2 rows using the Goemans framework.
Dey and Wolsey in [32] study lifting and strengthening this type of cuts using integrality of
non-basic variables.

The work in this chapter develops and discusses the approach presented by Balas in 2009
in the meetings [7, 8].

As shown in [2], multiple row cuts belong to the class of Intersection Cuts [5] which are
Disjunctive Cuts [4]. In this chapter we present a different perspective of the structure given
by multiple rows of the simplex tableau and we show how Disjunctive Programming can be
used to generate valid cuts in this context.

In the rest of this Section we review the tools offered by Disjunctive Programming and the
connection with Intersection cuts. In Section 2.2 we introduce the concept of Disjunctive
Hull associated to 2 rows of a simplex tableau and we examine the relation between the
Disjunctive Hull and the Integer Hull. We then consider the case of 2 rows of the simplex
tableau in Section 2.3 and we focus on the 0-1 case in Section 2.4. We discuss efficient
procedures based on the Lift-and-Project framework to generate our class of cuts and we
illustrate them computationally in Section 2.5. Cut strengthening techniques that exploit
the integrality of the non basic variables are also presented.
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2.1.1 Intersection cuts and Disjunctive Programming

Suppose a Mixed Integer Program is given in the form of q rows of the simplex tableau

x = x̄+
∑
j∈J

rjsj, x ∈ Zq
+, s ∈ Rn

+ (2.1.1)

where x̄ is a basic feasible solution to LP, the linear programming relaxation of a MIP, and
we are interested in generating an inequality that cuts off x̄ but no feasible integer point.

Theorem 2.1.1. Balas [5]. Let T ⊆ Rq be a closed convex set such that x̄ ∈ intT and intT
contains no feasible integer point. For j ∈ J , let s∗j := max{sj : x̄ + rjsj ∈ T}. Then the
inequality αs ≥ 1, where αj =

1
s∗j
, j ∈ J , cuts off x̄ but no feasible integer point.

The inequality αs ≥ 1 is known as an intersection cut. Theorem 2.1.1 is illustrated by

x̄
T

(a)

T

x̄

(b)

Figure 2.1: Two intersection cuts

Figure 2.1. In both cases (a) and (b) the convex set T consists of the intersection of two
halfspaces, but in (b) the two halfspaces are defined by hyperplanes parallel to one of the
coordinate axes, and so their intersection defines an infinite strip. The intersection cut from
this latter set T is the Gomory Mixed Integer cut (GMI).

This particular class of intersection cuts, the GMI cuts, has played a crucial role in making
mixed integer programs practically solvable. These cuts are derived from a convex set of the
form bx̄ic ≤ xi ≤ dx̄ie, where xi = x̄i +

∑
j∈J r

i
jsj is one of the rows of an optimal simplex

tableau. More generally, cuts obtained from a convex set of the form π0 ≤ πx ≤ π0 + 1,
where (π, π0) is an integer vector with gcd(π) = 1, are known in the literature as split cuts.
It is then natural to ask the question whether intersection cuts derived simultaneously from
several rows of a simplex tableau have some properties that distinguish them from split cuts
[25]. It was this question that has led to the investigation of intersection cuts from maximal
lattice-free convex sets by [2, 27] and others.

We propose a different approach to the same problem, which promises some computa-
tional advantages. The approach is that of Disjunctive Programming, a natural outgrowth
of the study of intersection cuts. To see the connection, consider an intersection cut from a
polyhedral set with the required properties, of the form T := {x : dix ≤ di0, i = 1, . . . ,m}.
Clearly, the requirement that intT should contain no feasible integer point, can be rephrased
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as the requirement that every feasible integer point should satisfy at least one of the weak
complements of the inequalities defining T , i.e. should satisfy the disjunction

m∨
i=1

(dix ≥ di0). (2.1.2)

Therefore an intersection cut from T can be viewed as a disjunctive cut from (2.1.2). While
these two cuts are the same, the disjunctive point of view opens up new perspectives. Thus,
suppose that in addition to (2.1.2), all feasible solutions have to satisfy the inequalities
Ax ≥ b. Then one way to proceed is to generate all valid cutting planes from (2.1.2) and
append these to Ax ≥ b. The resulting system will be

P :=

{
x ∈ Rn : (Ax ≥ b) ∩ conv

(
m∨
i=1

(
dix ≥ di0

))}
.

But another way to proceed is to introduce Ax ≥ b into each term of the disjunction (2.1.2),
i.e. replace (2.1.2) with

m∨
i=1

(
Ax ≥ b
dix ≥ di0

)
, (2.1.3)

and take the convex hull of this union of polyhedra:

Q := conv

(
m∨
i=1

(
Ax ≥ b
dix ≥ di0

))

Now it is not hard to see that Q ⊆ P , and in fact Q is in most cases a much tighter constraint
set than P . We illustrate the difference on a 2-term disjunction. Given an arbitrary Mixed
Integer Program, let (π, π0) be an integer vector with a component πj for every integer-
constrained variable. Then the disjunctive cut derived from

πx ≤ π0 ∨ πx ≥ π0 + 1 (2.1.4)

is equivalent to the intersection cut derived from the convex set

π0 ≤ πx ≤ π0 + 1,

illustrated in Figure 2.1. On the other hand, the disjunction(
Ax ≥ b
πx ≤ π0

)
∨

(
Ax ≥ b
πx ≥ π0 + 1

)
(2.1.5)

gives rise to an entire family of cuts, whose members are determined by the multipliers u, v
associated with Ax ≥ b in the two terms of this more general disjunction

(π − uA)x ≤ π0 − ub ∨ (π + vA)x ≥ π0 + vb+ 1 (2.1.6)
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Cuts derived from a disjunction of the form (2.1.4) are called split cuts, a term that reflects
the fact that (2.1.4) splits the space into two disjoint half-spaces. Cook, Kannan and Schrijver
[25] who coined this term also extended it to the much larger family of cuts derived from
disjunctions of the form (2.1.6). Since we sometimes need to distinguish between these two
classes, we will call the first one pure split cuts, and the second one composite split cuts.

Disjunctive sets of the form (2.1.3) or (2.1.5) represent unions of polyhedra, and the
study of optimization over unions of polyhedra is known as Disjunctive Programming. Its
two basic results are a compact representation of the convex hull of a union of polyhedra in a
higher dimensional space, and the sequential convexifiability of facial disjunctive sets [6, 4].
The application of disjunctive programming to mixed 0-1 programs has become known as
the lift-and-project method [9]. Here we apply this approach to the study of intersection
cuts from multiple rows of the simplex tableau.

2.2 Integer and Disjunctive Hulls

Consider again a system defined by q rows of the simplex tableau, this time without the
integrality constraints:

x = f +
∑
j∈J

rjsj, sj ≥ 0, j ∈ J, (2.2.1)

where f , rj ∈ Rq, j ∈ J := {1, . . . , n}, and assume 0 ≤ fi ≤ 1, i ∈ Q := {1, . . . , q}.
This assumption can be made without loss of generality since we replace x′

i = xi − bfic and
f ′
i = fi − bfic, i ∈ {1, 2}, and we have that x′

i, f
′
i , i ∈ Q satisfy the assumption. The set

PL := {(x, s) ∈ Rq × Rn : (x, s) satisfies (2.2.1)}

is the polyhedral cone with apex at (x, s) = (f, 0) defined by the constraints that are tight for
this particular basic solution. Imposing the integrality constraints on the basic components
we get the mixed integer set

PI := {(x, s) ∈ PL : xi integer, i ∈ Q},

obtained from the original mixed integer feasible set by removing the remaining constraints
of the latter. Its convex hull, convPI , is Gomory’s corner polyhedron [38, 39], or the Integer
Hull of the MIP over the cone PL. The main objective of the papers mentioned in the
introduction was to study the structure of PI for small q, with a view of characterizing the
facets of convPI and minimal valid inequalities for PI .

Consider now the following disjunctive relaxation of PI , obtained by replacing the inte-
grality constraints on xi with the simple disjunctions xi ≤ 0 ∨ xi ≥ 1, i ∈ Q:

PD := {(x, s) ∈ PL : xi ≤ 0 ∨ xi ≥ 1, i ∈ Q}.

Like PI , PD is a nonconvex set. Its convex hull, convPD, which we call the Simple
Disjunctive Hull, is a weaker relaxation of PI than convPI , i.e. convPD ⊇ convPI , but it is
easier to handle, since it is the convex hull of the union of 2q polyhedra. Thus one can apply
disjunctive programming and lift-and-project techniques to generate facets of convPD at a

26



computational cost that for small q seems acceptable. In this context, the crucial question
is of course, how much weaker is the relaxation convPD than convPI? We will pose this
question in a more specific form that will enable us to give it a practically useful answer:
When is it that a facet defining inequality for convPD is also facet defining for convPI? In
other words, which facets of the simple Disjunctive Hull are also facets of the Integer Hull?
Before addressing this question, however, we will take a side-step, by introducing a third
kind of hull. If we strengthen the disjunctive relaxation of PI by replacing the inequalities
in the disjunctions xi ≤ 0 ∨ xi ≥ 1, i ∈ Q, with equations, we get the set

P=
D := {(x, s) ∈ PL : xi = 0 ∨ xi = 1, i ∈ Q}, (2.2.2)

whose convex hull, convP=
D , we call the 0-1 Disjunctive Hull. For a general mixed integer

program, the 0-1 Disjunctive Hull is not a valid relaxation, in that it may cut off nonbinary
feasible integer points. Indeed, we have

convPD ⊇ convPI ⊇ convP=
D ,

where both inclusions are strict and are valid in the context of Mixed Integer 0-1 programs
only, since all the non 0-1 integer points that it cuts off are infeasible. Hence convP=

D is
equivalent to the convex hull of PI ∩ {(x, 0) : 0 ≤ xi ≤ 1, i ∈ Q}, or the Integer Hull of PI

reinforced with the bounds on the xi. Furthermore, as we will see later on, finding facets of
convP=

D requires roughly the same computational effort as finding facets of convPD.
The upshot of this is that for the important class of Mixed Integer 0-1 Programs, all facet

defining inequalities of convP=
D are facet defining for the Integer Hull. Furthermore, from

the sequential convexification theorem of Disjunctive Programming, all such inequalities are
of split rank ≤ q, i.e. they can be obtained by applying a split cut generating procedure
at most q times recursively. This is an important fact which should be kept in mind when
comparing the strength of intersection cuts from q rows with that of split cuts.

2.2.1 Properties of the Simple Disjunctive Hull

The set PD defined in Section 2.2 is the collection of those points (x, s) ∈ Rq ×Rn satisfying
(2.2.1) and xi ≤ 0 ∨ xi ≥ 1, i ∈ Q. Put in disjunctive normal form, this last constraint set
becomes 

x1 ≤ 0
x2 ≤ 0

...
xq ≤ 0

 ∨


x1 ≥ 1
x2 ≤ 0

...
xq ≤ 0

 ∨ · · · ∨


x1 ≥ 1
x2 ≥ 1

...
xq ≥ 1

 (2.2.3)

Each term of (2.2.3) defines an orthant-cone with apex at a vertex of the q-dimensional
unit cube. These 2q orthant-cones are illustrated for q = 2 in Figure 2.2.

Using (2.2.1) to eliminate the x-components and denoting by ri the i-th row of the q×n
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Figure 2.2: Orthant-cones for the case q = 2

matrix R = (rj)
n
j=1 , (2.2.3) can be represented in Rn as s ≥ 0 and

−r1s ≥ f1
−r2s ≥ f2

...
−rqs ≥ fq

 ∨


r1s ≥ 1− f1
−r2s ≥ f2

...
−rqs ≥ fq

 ∨ · · · ∨


r1s ≥ 1− f1
r2s ≥ 1− f2

...
rqs ≥ 1− fq

 (2.2.4)

If P
(n)
i ⊆ Rn denotes the polyhedron defined by the i-th term of this disjunction plus

the constraints s ≥ 0, then PD can be defined in n-space as P
(n)
D = ∪t

i=1P
(n)
i where t = 2q.

Furthermore, we have the following:

Theorem 2.2.1. convP
(n)
D is the set of those s ∈ Rn satisfying s ≥ 0 and all the inequalities

αs ≥ 1 whose coefficient vectors α ∈ Rn satisfy the system

α+ r1u11 + · · ·+ rqu1q ≥ 0

α − r1u21 + · · ·+ rqu2q ≥ 0

...
. . .

...

α − r1ut1 − · · · − rqutq ≥ 0

f1u11 + · · ·+ fqu1q ≥ 1

(1−f1)u21 + · · ·+ f2u2q ≥ 1

. . .
...

(1−f1)ut1 + · · ·+ (1−f2)utq ≥ 1

(2.2.5)

for some uik ≥ 0, i = 1, . . . , t = 2q, k = 1, . . . , q.

Proof. Applying the basic theorem of Disjunctive Programming to convP
(n)
D we introduce
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auxiliary variables si ∈ Rn, zi ∈ R, i = 1, . . . , t = 2q, and obtain the higher-dimensional
representation

s − s1 −s2 . . . −st = 0

−r1s1 −f1z1 ≥ 0

−r2s1 −f2z1 ≥ 0

...
...

...

−rqs1 −fqz1 ≥ 0

r1s2 −(1−f1)z2 ≥ 0

−r2s2 −f2z2 ≥ 0

...
...

...

−rqs2 −fqz2 ≥ 0

. . .
. . .

...

−r1st −(1−f1)zt ≥ 0

−r2st −(1−f2)zt ≥ 0

...
...

...

−rqst −(1−fq)zt ≥ 0

z1 +z2 + · · · +zt = 1

si ≥ 0, i = 1, . . . , t; zi ≥ 0, i = 1, . . . , t

(2.2.6)

Projecting this system onto the s-space with multipliers α; u11, . . . , u1q; u21, . . . , u2q; . . .;
ut1, . . . , utq, we obtain

α + r1u11 + · · ·+ rqu1q ≥ 0

...
. . .

...

α −r1ut1 − · · ·− −rqutq ≥ 0

−β + f1u11 + · · ·+ fqu1q ≥ 0

...
. . .

...

−β +(1−f1)utf1 + · · ·+ (1−fq)utq ≥ 0

uik ≥ 0, i = 1, . . . , t, k = 1, . . . , q

(2.2.7)

Applying the normalization β = 1 (clearly β = −1 does not yield any cuts since it makes
(2.2.7) unbounded) we obtain the representation given in the theorem.

In order to restate the system (2.2.5) in a more concise form, for each i ∈ {1, . . . , t} we
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partition the index set Q := {1, . . . , q} into

Q+
i := {k ∈ Q : uik has coefficient vector rk}

Q−
i := {k ∈ Q : uik has coefficient vector −rk},

with Q+
i ∪Q−

i = Q, i = 1, . . . , t = 2k. Then (2.2.5) can be restated as

α +
∑(

rkuik : k ∈ Q+
i

)
−

∑(
rkuik : k ∈ Q−

i

)
≥ 0∑

(fkuik : k ∈ Q+
i ) +

∑
((1− fk)uik : k ∈ Q−

i ) ≥ 1, i = 1, . . . , t

uik ≥ 0, i = 1, . . . , t = 2q, k = 1, . . . , q

(2.2.5′)

The system (2.2.5) has several interesting properties described in the next few proposi-
tions.

Proposition 2.2.2. For any p ∈ Rn, p > 0, all optimal basic solutions to the cut generating
linear program

min{pα : (α, u) satisfies (2.2.5)} (CGLP)Q

are of the form
αj = max{α1

j , . . . , α
t
j}, (2.2.8)

where
αi
j := −

∑
(rkj uik : k ∈ Q+

i ) +
∑

(rkj uik : k ∈ Q−
i ), (2.2.9)

i = 1, . . . , t = 2q, with the uik satisfying (2.2.5 ′).

Proof. The constraints of (2.2.5) require

αj ≥ αi
j, i = 1, . . . , t, j = 1, . . . , n

Suppose there is an optimal solution to (CGLP)Q such that αj∗ > max{αi
j∗ : i = 1, . . . , t}

for some j∗ ∈ {1, . . . , n}. Then setting αj∗ equal to the maximum on the righthand side, and
leaving αj unchanged for all j 6= j∗ yields a better solution, contrary to the assumption.

Proposition 2.2.3. In any valid inequality αs ≥ 1 for convP
(n)
D , αj ≥ 0, j = 1, . . . , n.

Proof. From (2.2.8), αj ≥ αi
j for all i = 1, . . . , 2q, and in view of the presence of all sign

patterns of rkj uik in the expressions (2.2.9), there is always an index i ∈ {i, . . . , 2q} with
αi
j ≥ 0.

Proposition 2.2.4. For any basic solution (α, u) to (CGLP)Q that satisfies as strict inequal-
ity some of the nonhomogeneous constraints of (2.2.5), there exists a basic solution (ᾱ, u),
with ᾱ = α, that satisfies at equality all the nonhomogeneous constraints of (CGLP)Q.

Proof. Let (α, u) be a basic solution to (CGLP)Q that satisfies as strict inequality some of
the nonhomogeneous constraints of (2.2.5). W.l.o.g., assume that

f1u11 + · · ·+ fqu1q − θ = 1
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is one of those constraints with the surplus variable θ positive in the solution (α, u). We will
show that there exists a solution (ᾱ, ū), with ᾱ = α and ūik = uik for all i 6= 1 and all k,
such that

f1ū11 + · · ·+ fqū1q = 1.

Applying this argument recursively then proves the Proposition.
Fix all variables of (CGLP)Q except for u11, . . . , u1q, at their values in the current solu-

tion. The fixing includes all the surplus variables except those in the n+ 1 rows containing
u11, . . . , u1q. This leaves the following constraint set in the free variables:

−r1ju11 − · · · − rqju1q + tj = ᾱj j = 1, . . . , n

f1u11 + · · ·+ fqu1q − θ = 1

u11, . . . , u1q ≥ 0, tj ≥ 0, j = 1, . . . , n, θ ≥ 0

(2.2.10)

Here θ, tj represent the surplus variables of the respective constraints. We claim that this
system has a solution with θ = 0. To see this, consider the linear program

min{θ : uik, tj and θ satisfy (2.2.10)}

and its dual,

maxλ0 +
n∑

j=1

ᾱjλj

subject to

f1λ0 −
n∑

j=1

r1jλj ≤ 0

...
...

fqλ0 −
n∑

j=1

rqjλj ≤ 0

−λ0 ≤ 1

λj ≤ 0, j = 1, . . . , n

Since ᾱj ≥ 0, j = 1, . . . , n, it is not hard to see that the dual linear program has an optimal
solution λ0 = 0, λj = 0, j = 1, . . . , n and hence the primal has an optimal solution with
θ = 0.

The obvious and important consequence of Proposition 2.2.4 is that for all practical
purposes we can replace all 2q nonhomogeneous inequalities in the constraint set (2.2.5) of
(CGLP)Q with equations. In view of Proposition 2.2.2, it then follows that we may restrict
our attention to basic feasible solutions that satisfy at equality n+ 2q out of the n× 2q + 2q

inequalities of (2.2.5) other than the nonnegativity constraints.
At this point we introduce the characterization of convP=

D , the 0-1 Disjunctive Hull
defined by (2.2.2), closely related to that of convPD. Just as in the case of PD, we denote

by P
=(n)
D the union of polyhedra in Rn representing the disjunction (2.2.4) in which all

the inequalities have been replaced by equations. The following Theorem is the analog of
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Theorem 2.2.1 for this case.

Theorem 2.2.5. convP
=(n)
D is the set of those s ∈ Rn satisfying s ≥ 0 and all inequalities

αs ≥ β whose coefficients satisfy the system

α+ r1u11 + · · ·+ r1u1q ≥ 0
...

. . .
...

α −r1ut1 − · · · − rqutq ≥ 0
−β + f1u11 + · · ·+ fqu1q = 0

...
. . .

...
−β +(1−f1)ut1 + · · ·+ (1−fq)utq = 0

(2.2.11)

for some uik, i = 1, . . . , t = 2q, k = 1, . . . , q.

Proof. The proof of Theorem 2.2.1 goes through with the following modifications. Since
the inequalities in the disjunctions (2.2.3) and (2.2.4) are all replaced with equations, the
inequalities in the system (2.2.6), other than the nonnegativity constraints, also become
equations. As a consequence, the variables uik of the projected system (2.2.7) become un-
restricted in sign. The remaining difference between (2.2.11) and (2.2.5) is the fact that in
(2.2.11) the last 2q constraints are equations rather than inequalities. This is due to the
fact that Proposition 2.2.4 applies here too. In other words, if we denote by (2.2.11′) the
system obtained from (2.2.11) by replacing the equations containing β with inequalities ≥,
then for any basic solution (α, u) to (CGLP)Q that satisfies as strict inequalities some of
the constraints (2.2.11′) containing β, there exists a basic solution (ᾱ, u), with ᾱ = α, that
satisfies at equality all the constraints containing β. The proof is essentially the same as
that of Proposition 2.2.4.

Thus the two basic differences between the systems describing convP
(n)
D and convP

=(n)
D

are that (a) the latter also contains inequalities of the form αx ≤ 1 (corresponding to β < 0),
and (b) the coefficients αj of the latter can be of any sign.

We now return to the simple Disjunctive Hull, convPD, and describe its vertices.

Proposition 2.2.6. Every vertex of convP
(n)
D is a vertex of some P

(n)
i , i ∈ {1, . . . , 2q}.

Proof. Let v be a vertex of convP
(n)
D . If v ∈ P

(n)
i for some i ∈ {1, . . . , t = 2q}, then v

must be a vertex of P
(n)
i , or else it could be expressed as a convex combination of points in

P
(n)
i , hence of P

(n)
D . On the other hand, if v 6∈ ∪P (n)

i but v ∈ convP
(n)
i , then v is a convex

combination of points in ∪t
i=1P

(n)
i , hence of convP

(n)
D , a contradiction.

Next we describe the vertices of P
(n)
i , i ∈ {1, . . . , 2q}. We will call a vertex of convP

(n)
D

(of P
(n)
i ) integer if it defines an integer x through (2.2.1); in other words if fi + ris is integer

for i = 1, . . . , q. All other vertices will be called fractional.
For any particular i∗ ∈ {1, . . . , 2q},

P
(n)
i∗ := {s ∈ Rn

+ : rhs ≤ −fh, h ∈ Qi∗ , rhs ≥ 1− fh, h ∈ Q \Qi∗}

where (Qi∗ , Q \Qi∗) is the partition of Q that defines i∗.
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Proposition 2.2.7. P
(n)
i∗ can have three kinds of vertices, distinguished by the corresponding

x-vectors that belong to one of these types:

(a) 0-1 vertices: xh = 0, h ∈ Qi∗ and xh = 1, h ∈ Q \Qi∗.

(b) non-binary integer vertices: xh ∈ Z−, h ∈ Qi∗, xh ∈ Z+, h ∈ Q \Qi∗ (here Z− and Z+

stand for the nonpositive and nonnegative integers respectively).

(c) fractional vertices: xh ≤ 0, h ∈ Qi∗, xh ≥ 1, h ∈ Q \ Qi∗, with at least one inequality
strict.

Proof. The three cases become exhaustive if the following fourth one is added: (d) fractional
vertices with 0 < xh < 1 for some h ∈ Q. But this case clearly violates at least one of the
constraints defining P

(n)
i∗ .

Note that P
(n)
i∗ can have several distinct vertices with the same associated x-vector,

corresponding to basic solutions with the same x-component. Note also that if a component
xh of a vertex is fractional, then xh < 0 or xh > 1.

The next theorem characterizes the facets of the Simple Disjunctive Hull.

Theorem 2.2.8. The inequality ᾱs ≥ 1 defines a facet of convP
(n)
D if and only if there exists

an objective function of the linear program (CGLP)Q of Proposition 2.2.2 with p > 0 such
that all optimal solutions (α, u) have α = ᾱ.

Proof outline. This is a special case of Theorem 4.6 of [4]. The inequality ᾱx ≥ 1 defines a

facet of convP
(n)
D if and only if ᾱ is a vertex of the polar of convP

(n)
D , which is the projection

of (2.2.5) onto the α-space. But ᾱ is a vertex of this polar if and only if there exists an
objective function vector p > 0 such that pα attains its unique minimum at ᾱ. 2

If the system (2.2.1) defining PL is of full row rank q, then the dimension of convPD is

n, since there are q + n variables and q independent equations. The dimension of convP
(n)
D

is also n, so the facets of convP
(n)
D are of dimension n− 1.

From a computational standpoint, the most important feature of (CGLP)Q is that the

facets of the n-dimensional convP
(n)
D can be generated by solving a smaller CGLP in a

subspace of at most t = 2q variables sj, and lifting the resulting inequality into the full
space. The idea of generating cuts in a subspace of the original higher dimensional cut
generating linear program and then lifting them to the full space goes back to [9, 12], where
lift-and-project cuts were generated from a 2-term disjunction by working in the subspace of
the fractional variables of the LP solution. Here we are working with a 2q-term disjunction,
and are considering a different subspace, suggested by the structure of the problem at hand,
but the lifting procedure is essentially the same as the one used in [9, 10].

Since our cuts are derived from a disjunction with 2q terms, if we want to create a
subproblem in which all terms are represented, we need 2q out of the n variables αj of
our (CGLP)Q. Furthermore, the 2q vectors rj corresponding to these αj have to span the
subspace Rq of the x-variables. Solving the (CGLP)Q in this subspace yields 2q values αj

and q × 2q associated multipliers uik, i = 1, . . . , 2q, k = 1, . . . , q; and these multipliers can
then be used to compute the remaining components of α. The significance of this is that
the computational cost of generating facets of convPD grows only linearly with n. Of course

33



this cost grows exponentially with q, but the approach discussed here is being considered for
small q.

The choice of the subspace is intimately related to one of the central questions that we
are pursuing, that of deciding which facets of the Disjunctive Hull are also facets of the
Integer Hull. The best way to address this question and that of the subspace to be chosen,
is to first interpret the inequalities defining the Disjunctive Hull as intersection cuts.

2.2.2 Cuts from the q-dimensional parametric cross-polytope

Consider the q-dimensional unit cube centered at (0, . . . , 0), Kq := {x ∈ Rq : −1
2
≤ xj ≤

1
2
, j ∈ Q}. Its polar, Ko

q := {x ∈ Rq : xy ≤ 1, ∀x ∈ K}, is known to be the q-dimensional
octahedron or cross-polytope; which, when scaled so as to circumscribe the unit cube, is the
outer polar of Kq:

K∗
q = {x ∈ Rq : |x| ≤ 1

2
q},

where |x| =
∑

(|xj| : j = 1, . . . , q}. Equivalently, |x| ≤ 1
2
q can be written as the system

−x1 − · · · − xq ≤ 1
2
q

x1 − · · · − xq ≤ 1
2
q

...

x1 + · · · + xq ≤ 1
2
q

(2.2.12)

of t = 2q inequalities in q variables.
Moving the center of the coordinate system to (1

2
, · · · , 1

2
) from (0, . . . , 0) changes the

righthand side coefficient of the i-th inequality in (2.2.12) from 1
2
q to a value equal to the

sum of positive coefficients on the lefthand side of the inequality.
Next we introduce the parameters vik, i = 1, . . . , t = 2q, k = 1, . . . , q, to obtain the

system
−v11x1 − · · · − v1qxq ≤ 0

v21x1 − · · · − v2qxq ≤ v21

−v31x1 + · · · − v3qxq ≤ v31

...
...

vt1x1 + · · · + vtqxq ≤ vt1 + . . .+ vtq

vik ≥ 0, i = 1, . . . , t = 2q, k = 1, . . . , q.

(2.2.13)

Note that the constraints of (2.2.13) are of the form∑
k∈Q̃+

i

vikxk −
∑
k∈Q̃−

i

vikxk ≤
∑
k∈Q̃+

i

vik,

where Q̃+
i and Q̃−

i are the sets of indices for which the coefficient of xk is +vik and −vik,
respectively. Note also that all inequalities that have the same number of coefficients with
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the plus sign have the same righthand side, equal to the sum of these coefficients.
We can normalize the system (2.2.13). Since we are looking for a connection with the

system (2.2.5) defining (CGLP)Q, we will use the normalization given by this system and
Proposition 2.2.4, i.e.

f1v11 + · · · + fqv1q = 1

(1− f1)v21 + · · · + fqv2q = 1

· · · · · ·

(1− f1)vt1 + · · · + (1− fq)vtq = 1

(2.2.14)

Note that these normalization constraints are of the general form∑
h∈Q̃+

i

(1− fk)vik +
∑
h∈Q̃−

i

fkvik = 1.

Let K̃∗(v) denote the parametric cross-polytope defined by (2.2.13). It is not hard to see
that for any fixed set of vik, (2.2.13) defines a convex polyhedron in x-space that contains
in its boundary all x ∈ Rq such that xk ∈ {0, 1}, k ∈ Q, hence is suitable for generating

intersection cuts. Furthermore, letting K̃∗(n)(v) be the expression for K̃∗(v) in the space of
the s-variables, obtained by substituting f +Rs for x into (2.2.13), we have

Theorem 2.2.9. For any values of the parameters vik satisfying (2.2.13), the intersection

cut α̃s ≥ 1 from K̃∗(n)(v) has coefficients α̃j =
1
s∗j
, where

s∗j = max{sj : f + rjsj ∈ K∗(n)(v)}. (2.2.15)

Proof. This is a special case of Theorem 2.1.1.

In order to compare the intersection cut α̃s ≥ 1 with the cut αs ≥ 1 from the q-term
disjunction (2.2.4), we have to restate (2.2.15) in terms of the system of inequalities defining

K̃∗(n)(v). This means that f + rjs
∗
j has to be expressed as the intersection point of the ray

f + rjsj, sj ≥ 0, with the first facet of K∗(n)(v) encountered. This yields

s∗j = min{s1j , . . . , stj}, (2.2.16)

where the sij are obtained by substituting fk +
∑n

h=1 r
k
j sh for xk, k = 1, . . . , q into the i-th

inequality of (2.2.13), and setting sh = 0 for all h 6= j:

sij = max

sj :

∑
k∈Q̃+

i

vikr
k
j −

∑
k∈Q̃−

i

vikr
k
j

 sj ≤
∑
k∈Q̃+

i

vik(1− fk) +
∑
k∈Q̃−

i

vikfk

 ,

i = 1, . . . , t = 2q.
Clearly, this maximum is bounded whenever the coefficient of sj is positive, in which
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case, if we normalize by setting
∑

k∈Q̃+
i
vik(1− fk) +

∑
k∈Q̃−

i
vikfk = 1, we obtain

sij =

∑
k∈Q̃+

i

vikr
k
j −

∑
k∈Q̃−

i

vikr
k
j

−1

. (2.2.17)

Comparing (2.2.16) and (2.2.17) to the expressions (2.2.8) and (2.2.9) for the coefficient
αj of the lift-and-project cut αs ≥ 1 of section 2.2.1, we find that setting vik = uik for all

i, k, as well as Q̃+
i = Q−

i and Q̃−
i = Q+

i , we obtain α̃j = αj.
This proves

Corollary 2.2.10. The intersection cut α̃s ≥ 1 from the parametric octahedron K̃∗(n)(v) is
the same as the lift-and-project cut αs ≥ 1 corresponding to the (CGLP)Q solution (α, u),
with vik = uik, i = 1, . . . , t, k = 1, . . . , q.

2.2.3 Facets of the Disjunctive Hull and the Integer Hull

Consider again the disjunctive relaxation of PI

PD = {(x, s) ∈ Rq × Rn : x = f +Rs, s ≥ 0, xi ≤ 0 ∨ xi ≥ 1, i ∈ Q}

introduced at the beginning of section 2.2, where x, f ∈ Rq, R ∈ Rq×n, and Q := {1, . . . , q}.
For i = 1, . . . , t = 2q, let pi be the vertex of Kq, the q-dimensional unit cube, defined by
pik = 0, i ∈ Q+

i , p
i
k = 1, i ∈ Q−

i .
Next we give a sufficient condition for an inequality αs ≥ 1 valid for PD to define a facet

of convPI , which for small q leads to an efficient procedure for generating inequalities that
are facet defining for convPI .

The dimension of P
(n)
I being n ≥ 2q, αs ≥ 1 defines a facet of convP

(n)
I if there exists

a subspace R2q of Rn such that the restriction of αs ≥ 1 to this subspace defines a facet of
convP

(2q)
I . If this is the case, then the inequality in question can be lifted to the full space

to yield a facet of convP
(n)
I by using the u-components of the solution (α, u) to the CGLP

in the subspace to compute the missing coefficients αj.

Theorem 2.2.11. Let αs ≥ 1 be a valid inequality for PD corresponding to a basic solution
(α, u) of (CGLP)Q, and let pi, i = 1, . . . , 2q, be the vertices of Kq. Suppose for each pi,
i = 1, . . . , 2q, there exists a subset Ji ⊂ J containing the indices of q linearly independent
rays rj1 , . . . , rjq , and a vector λ ∈ Rq

+, satisfying

pi − f =

jq∑
j=j1

1
αj
rjλj,

jq∑
j=j1

λj = 1. (2.2.18)

Then the inequality
∑

j∈J αjsj ≥ 1 defines a facet of convP
(|J |)
I , and its lifting based on the

u-components of the solution (α, u) defines a facet of convP
(n)
I .
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Proof. Suppose the subset of 2q rays indexed by J satisfies the requirements of the Theorem.
Then for every i = 1, . . . , 2q, the vertex pi of Kq satisfies

pi =

jq∑
j=j1

(f − 1
αj
rj)λj,

jq∑
j=j1

λj = 1

for some λj ≥ 0, j = j1, . . . , jq, i.e. pi can be expressed as a convex combination of the q
points f + 1

αj
rj, j = j1, . . . , jq. But f + 1

αj
rj = f + rjs

∗
j is the intersection point of the ray

f + rjsj with bd K̃∗
q , hence each of these points satisfies αs = 1 and consequently so does pi.

Since
∑
j∈J

αjsj ≥ 1 is satisfied at equality by 2q integer points of convP
(|J |)
I , it defines a facet

of the latter. Furthermore, lifting the remaining coefficients αj of the inequality by using

the u-components of (α, u) yields a facet defining inequality for convP
(n)
I .

The sufficient condition of Theorem 2.2.11 is not necessary. There are two kinds of
situations not satisfying the above condition, in which a valid inequality αs ≥ 1 for PD may
define a facet of convPI . The first one involves an inequality αs ≥ 1 such that (2.2.18) is
not satisfied for all 2q vertices of Kq, but convPD has 2q vertices whose x-components pi

satisfy (2.2.18), i.e. convPD has multiple vertices with the same x-component. The second
situation involves facet defining split cuts.

2.3 The two-row case

We now restrict our attention to the case q = 2, i.e. we consider two rows from a simplex
tableau of a MIP problem with the variables x1, x2 and sj, j ∈ J :

PL = {(x, s) ∈ R2+|J | : x1 = f1 +
∑

j∈J r
1
jsj

x2 = f2 +
∑

j∈J r
2
jsj

sj ≥ 0 j ∈ J }.
(2.3.1)

where x1, x2 are basic variables required to be integers and sj, j ∈ J are non-basic. Let
PI = {(x, s) ∈ Z2 × R|J | : (x, s) ∈ PL}.

In the literature the column vectors rj, j ∈ J are called rays. In addition we give the
following definition:

Definition We say that a ray rj in (2.3.1) hits an orthant-cone Qi, i ∈ {1, . . . , 4} if there
exists λ0 > 0 such that f + λrj ∈ Qi for all λ ≥ λ0.

For the case of 2 rows we can express the Disjunctive Relaxation as follows. Denote by s
the vector of non-basic variables sj, j ∈ J and by r1, r2 the row vectors of their corresponding
coefficients in (2.3.1). For this case (2.2.4) becomes(

−r1s ≥ f1
−r2s ≥ f2

)
∨
(
r1s ≥ 1− f1
−r2s ≥ f2

)
∨
(
r1s ≥ 1− f1
r2s ≥ 1− f2

)
∨
(
−r1s ≥ f1
r2s ≥ 1− f2

)
(2.3.2)
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for s ≥ 0.
As shown in [4, 9] we can reformulate (2.3.2) as the constraint set

s −s1 − s2 − s3 − s4 = 0 (α)
s10 + s20 + s30 + s40 = 1 (β)

−r1s1 −f1s10 ≥ 0 (v1)
−r2s1 −f2s10 ≥ 0 (w1)
+r1s2 −(1− f1)s

2
0 ≥ 0 (v2)

−r2s2 −f2s20 ≥ 0 (w2)
+r1s3 −(1− f1)s

3
0 ≥ 0 (v3)

+r2s3 −(1− f2)s
3
0 ≥ 0 (w3)

−r1s4 −f1s40 ≥ 0 (v4)
+r2s4 −(1− f2)s

4
0 ≥ 0 (w4)

si ≥ 0, i ∈ {1 . . . 4}
si0 ≥ 0, i ∈ {1 . . . 4}.

(2.3.3)

The Disjunctive Hull is the projection of (2.3.3) onto the space of the s variables. The Lift-
and-Project framework allows us to generate valid cuts for the Disjunctive Hull. A valid cut
αs − β ≥ 0 for the Disjunctive Hull expressed in the space of the s variables only is given
by solving the Cut Generation Linear Program for an appropriate objective function with
cβ ≥ 0, cj ≥ 0, j ∈ J .

min
∑

j cjαj + cββ

α +r1v1 +r2w1 ≥ 0
α −r1v2 +r2w2 ≥ 0
α −r1v3 −r2w3 ≥ 0
α +r1v4 −r2w4 ≥ 0
−β +f1v1 +f2w1 ≥ 0
−β +(1− f1)v2 +f2w2 ≥ 0
−β +(1− f1)v3 +(1− f2)w3 ≥ 0
−β +f1v4 +(1− f2)w4 ≥ 0
vi, wi ≥ 0 i ∈ {1 . . . 4}.

(2.3.4)

Applying normalization β = 1, by Proposition 2.2.4 (2.3.4) becomes

min
∑

j cjαj

α +r1v1 +r2w1 ≥ 0
α −r1v2 +r2w2 ≥ 0
α −r1v3 −r2w3 ≥ 0
α +r1v4 −r2w4 ≥ 0

+f1v1 +f2w1 = 1
+(1− f1)v2 +f2w2 = 1
+(1− f1)v3 +(1− f2)w3 = 1
+f1v4 +(1− f2)w4 = 1

vi, wi ≥ 0 i ∈ {1 . . . 4}.

(2.3.5)
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By Proposition 2.2.2 the cuts generated by (2.3.5) have the form αs ≥ 1 where

αj = max{α1
j , α

2
j , α

3
j , α

4
j}

where
α1
j = −r1jv1 −r2jw1

α2
j = +r1jv2 −r2jw2

α3
j = +r1jv3 +r2jw3

α4
j = −r1jv4 +r2jw4.

(2.3.6)

2.3.1 Geometric interpretation of the CGLP

A cut produced by the CGLP can be viewed as an intersection cut given by a convex set
that does not contain any feasible integer point in its interior. This convex set is uniquely
determined by the values of v, w.

Definition For given v, w, we call the polyhedron

Pocta(v, w) = {(x1, x2) ∈ R2 : −v1x1 − w1x2 ≤ 0 ;
+v2x1 − w2x2 ≤ v2 ;
+v3x1 + w3x2 ≤ v3 + w3 ;
−v4x1 + w4x2 ≤ w4 }

the (v, w)-parametric octahedron.

If vi = 0 or wi = 0 for some i ∈ {1, . . . , 4} the i-th facet of Pocta is parallel to one of the
coordinate axes. If vi, wi > 0 then the i-th facet of Pocta is tilted (note that since we use the
normalization β = 1, vi and wi cannot both be 0).

Varying the parameters v, w, the (v, w)-parametric octahedron produces different
configurations according to the non-zero components of v, w. In the rest of the section we
refer to these configurations using the short reference indicated in parenthesis.

• (S) If exactly 4 components of (v, w) are positive, the parametric octahedron is the split
{x ∈ R2 : 0 ≤ x1 ≤ 1} if vi > 0, i = 1, . . . , 4; or x2 ≤ 0 ∨ x2 ≥ 1 if wi > 0, i = 1, . . . , 4.
Figure 2.3(a) illustrates the case with vi > 0, wi = 0, i ∈ {1, . . . , 4} ,Figure 2.3(b)
illustrate the case with vi = 0, wi > 0, i ∈ {1, . . . , 4}.

• (TA) If exactly 5 components of (v, w) are positive, the parametric octahedron is a
triangle with 1 tilted face (by “tilted” we mean a face that is not parallel to any of the
two axes). Figure 2.3(c) illustrate the case with v1, w2, v3, w3, v4 > 0;w1, v2, w4 = 0.
When vi = wi for some i ∈ {1, . . . , 4} the parametric octahedron defines a triangle
with vertices (0, 0); (2, 0); (0, 2) or symmetric configurations, then it corresponds to a
Triangle of Type 1 as in [2]. In the general case it corresponds to a Triangle of Type
2 as in [2].

• (TB) If exactly 6 components of (v, w) are positive, the parametric octahedron is a
triangle with 2 tilted faces. Figure 2.3(d) illustrate the case with v1, w1, v2, w2, w3, w4 >
0; v3, v4 = 0. In [2] this configuration corresponds to a Triangle of Type 2.
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• (Q) If all 8 components of (v, w) are positive, the parametric octahedron is a quadri-
lateral. See Figure 2.3(e).

The case with 7 components of (v, w) positive does not correspond to a maximal para-
metric octahedron, therefore we do not need to consider it. Suppose all the components
are positive except for v1 which is 0. The facet of Pocta corresponding to (0, 0) is horizontal
and goes through the point (1, 0). Is not hard to see that setting v2 = 0 we enlarge the set
defined by the parametric octahedron.
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Figure 2.3: Configurations of the parametric octahedron for the MIP case

For a cut
∑

j∈J αjsj ≥ 1 Andersen et al. introduce in [2] the set

Lα =

{
x ∈ R2 : (x, s) ∈ PL ∧

∑
j∈J

αjsj ≤ 1

}
. (2.3.7)

Clearly, Lα ⊆ Pocta(v, w), and the inclusion is sometimes strict.

2.3.2 Disjunctive Hull facets for the Andersen et al. example

In [2], Andersen et al. considered the two rows instance

x1 = 1
4

+2s1 +1s2 −3s3 +1s5
x2 = 1

2
+1s1 +1s2 +2s3 −1s4 −2s5.

(2.3.8)
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We present the complete description of the Disjunctive Hull for (2.3.8). In order to do so we
generated the CGLP of (2.3.8) using the normalization constraint β = 1 and we considered
all feasible bases. Every feasible base could yield a facet necessary to the description of the
Disjunctive Hull. From a practical point of view, the method we followed is not applicable for
real world instances, since the number of bases grows exponentially with |J |, but it is suitable
for this experiment since the number of rays is of managable size. We explore later in this
chapter alternative methodologies to generate cuts derived from the CGLP that are cheaper
than fully enumerate all the bases. The CGLP produces 5 different facets. For each of these
we show the configuration of the parametric octahedron that yields the corresponding cut
in terms of the v, w variables:

1. Cut (TB): 2s1 + 2s2 + 4s3 + s4 +
12
7
s5 ≥ 1

v1 = 2; v2 =
8
7
; v3 = 0; v4 = 0

w1 = 1; w2 =
2
7
; w3 = 2; w4 = 2

2. Cut (TB):
8
3
s1 +

4
3
s2 +

44
9
s3 +

8
9
s4 +

4
3
s5 ≥ 1

v1 =
20
9
; v2 =

4
3
; v3 =

4
3
; v4 =

4
9

w1 =
8
9
; w2 = 0; w3 = 0; w4 =

16
9

3. Cut (TA):
8
3
s1 + 2s2 + 4s3 + s4 +

4
3
s5 ≥ 1

v1 = 2; v2 =
4
3
; v3 = 0; v4 = 0

w1 = 1; w2 = 0; w3 = 2; w4 = 2

4. Cut (S): 8
3
s1 +

4
3
s2 + 12s3 +

4
3
s5 ≥ 1

v1 = 4; v2 =
4
3
; v3 =

4
3
; v4 = 4

w1 = 0; w2 = 0; w3 = 0; w4 = 0

5. Cut (TB): 2s1 + 2s2 +
68
7
s3 +

2
7
s4 +

12
7
s5 ≥ 1

v1 =
24
7
; v2 =

8
7
; v3 = 0; v4 = 0

w1 =
2
7
; w2 =

2
7
; w3 = 2; w4 = 2

For each of the 5 cuts, we give its intersection cut representation in the space of x1, x2

variables in Figure 2.4. Cut 1 is the facet of the Integer Hull presented in [2].
Using the software CDD+ by Fukuda [35] we determined the extreme points and extreme

directions of PD for the considered example. We used as input the model given by the two
original simplex rows together with the 5 generated cuts

x1 −2s1 −1s2 +3s3 −1s5 = 1
4

x2 −1s1 −1s2 −2s3 +1s4 +2s5 = 1
2

2s1 +2s2 +4s3 +1s4 +12
7
s5 ≥ 1

8
3
s1 +2s2 +4s3 +1s4 +4

3
s5 ≥ 1

8
3
s1 +4

3
s2 +44

9
s3 +8

9
s4 +4

3
s5 ≥ 1

8
3
s1 +4

3
s2 +12s3 +4

3
s5 ≥ 1

2s1 +2s2 +68
7
s3 +2

7
s4 +12

7
s5 ≥ 1.

CDD+ produced the following results:
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Figure 2.4: The Disjunctive Hull facets for the Andersen et al. example

Extreme points:
x1 x2 s1 s2 s3 s4 s5
0 0 0 0 1

12
2
3

0
−1

2
1 0 0 1

4
0 0

0 1 0 1
5

3
20

0 0
1 −1 0 0 0 0 3

4

1 5
4

0 3
4

0 0 0
1 1 1

4
1
4

0 0 0
1 0 3

8
0 0 7

8
0

5
4

1 1
2

0 0 0 0
1 0 1

5
0 0 0 7

20

Extreme directions:
x1 x2 s1 s2 s3 s4 s5
2 1 1 0 0 0 0
1 1 0 1 0 0 0
1 −2 0 0 0 0 1
−3 2 0 0 1 0 0
0 −1 0 0 0 1 0

The extreme points and extreme rays, restricted to the space of x1, x2 variables, are shown
in the sixth graph in Figure 2.4. Of the 5 facets of PD, 3 are facets for PI : cuts 1,2 and 4.
Note that only cuts 1 and 2 are of the type we are after since cut 4 is a split cut and can be
derived using only the tableau row corresponding to the variable x2. Cut 3 and 5 are facets
of the Disjunctive Hull by Theorem 2.2.8 using the objective coefficients (17, 65, 73, 65, 45)
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and (75, 1, 5, 67, 60, 1) respectively.

2.3.3 Facets of the Disjunctive Hull that are facets of the Integer
Hull

In this section we explore the connection between the facets of PD and facets of PI and we
illustrate procedures derived from the Lift-and-Project framework to derive facets for PI .

Definition The K-vertex ray associated to a vertex t of K is the ray going from f to t.
The four K-vertex rays are denoted as follows:

• q1 is the K-vertex ray corresponding to (0, 0), i.e. q1 =
(−f1
−f2

)
• q2 is the K-vertex ray corresponding to (1, 0), i.e. q2 =

(
1−f1
−f2

)
• q3 is the K-vertex ray corresponding to (1, 1), i.e. q3 =

(
1−f1
1−f2

)
• q4 is the K-vertex ray corresponding to (0, 1), i.e. q4 =

( −f1
1−f2

)
Definition The K-vertex cone associated to a vertex t of K is cone(rt−, rt+) that satisfies
the following properties:

• rt−, rt+ ∈ {rj : j ∈ J}

• qt ∈ cone(rt−, rt+)

• rj /∈ cone(rt−, rt+) ∀rj, j ∈ J : rj 6= rt−, rt+

If there exists a ray rk ∈ {rj, j ∈ J} such that t = f + θrk for some θ > 0 then the K-vertex
cone associated to t contains the ray rk only, i.e. rt− = rt+ = rk.

By Theorem 2.2.8 all the relevant inequalities of the Disjunctive Hull can be derived from
at most 2q (=4 in this case) rays and lifting the resulting inequality into the full space. Note
that basic feasible solutions to the CGLP can sometimes be obtained even from 3 or 2 rays.
In these cases the solutions we get are primal degenerate, i.e. some basic variables are equal
to 0 as shown in the following example

Example
x1 = 1

4
+2s1 −3s2 +1s3

x2 = 1
2
−1s1 −2s2 +2s3

sj ≥ 0 j ∈ J
x1, x2 ∈ Z

(2.3.9)

The CGLP (2.3.5) associated to (2.3.9) contains 16 constraints and 23 variables (of which 12
slack variables tij associated to the α constraint corresponding to the orthant-cone i and the
ray j). The following is a basic feasible solution to (2.3.5). Only basic variables are shown,
the other variables are equal to 0:

α1 = 2;α2 = 4;α3 =
12
7
; v4 = 2; v3 =

8
7
;w1 = 2;w2 = 2;w4 = 1;w3 =

2
7
; t11 = 0; t12 = 0;

t13 =
40
7
; t23 =

40
7
; t31 = 7; t33 =

12
7
; t42 = 8.

43



Suppose now that the variable s3 and the associated ray is dropped. The new CGLP contains
12 constraints and 19 variables (of which 8 slack variables tij defined as before). The following
is a basic feasible solution to (2.3.5). Only basic variables are shown, the other variables are
equal to 0:

α1 = 2;α2 = 4;w1 = 2;w2 = 2;w3 = 2;w4 = 2; t11 = 0; t12 = 0; t31 = 4; t32 = 8; t41 = 4; t42 = 8.

The next Proposition (that follows from Theorem 2.2.11 for q = 2) gives a sufficient
condition for a facet of PD to be a facet of PI that we use later when we present our
procedure to generate facets of PI .

Proposition 2.3.1. A facet αs ≥ 1 of PD that is not a split cut and is generated by the
CGLP from a MIP instance with 4 rays, is a facet of PI if the following condition is satisfied
by the values of α:

∃λt, 0 ≤ λt ≤ 1 : t = f + λt
rt−
αt−

+ (1− λt)
rt+
αt+

, ∀t ∈ {(0, 0), (1, 0), (1, 1), (0, 1)} (2.3.10)

The condition is equivalent to require that each vertex t of K must lie on the segment between
the points given by the intersection of the parametric octahedron boundary and the rays
rt−, rt+.

Proof. If the values α satisfy the condition (2.3.10), then the inequality αs ≥ 1 holds at
equality for all four vertices of K which are four affinely independent in the space (x, s) with
x integral.

Let P ′
I be the Integer Hull given by dropping all but 4 non-basic variables of PI . Propo-

sition 2.3.1 gives a condition for instances of P ′
I , in 2.3.4 we discuss how a facet for the PI

restricted to 4 rays is lifted to a facet for PI .
In the following we are going to discuss triangle and quadrilateral facets that can be

obtained using the Disjunctive Hull approach. Our discussion does not exhaustively consider
every type of facet for PI that is also a facet for PD, instead we focus on two subclasses of
those that can be obtained without the computational effort required to solve the CGLP.
The two subclasses are:

1. Non-degenerate Quadrilateral facets, are obtained from quadrilateral parametric octa-
hedra,

2. Degenerate Quadrilateral facets, are obtained from triangular parametric octahedra.

Non-degenerate quadrilateral facets

For these facets the set Lα and the parametric octahedron defined by the values of v, w
coincide. This is equivalent to the following: each vertex of the quadrilateral lies on two
adjacent facets of the parametric octahedron. In this type of configuration every edge of
K is intersected by at least one ray. Given four rays rA, rB, rC , rD intersecting respectively
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the edges {(0, 0), (1, 0)} ; {(1, 0), (1, 1)} ; {(1, 1), (0, 1)} and {(0, 1), (0, 0)} the following
inequalities of the CGLP must hold at equality:

αA +r1Av1 +r2Aw1 ≥ 0
αA −r1Av2 +r2Aw2 ≥ 0
αB −r1Bv2 +r2Bw2 ≥ 0
αB −r1Bv3 −r2Bw3 ≥ 0
αC −r1Cv3 −r2Cw3 ≥ 0
αC +r1Cv4 −r2Cw4 ≥ 0
αD +r1Dv4 −r2Dw4 ≥ 0
αD +r1Dv1 +r2Dw1 ≥ 0

The system has 8 inequalities and 4 equalities given by the normalization. For the parametric
octahedron to be a quadrilateral, all v, w have to be positive. Hence all 8 inequalities have
to hold at equality. Therefore we have the following system of 12 equations in 12 variables
(α, v, w):

αA +r1Av1 +r2Aw1 = 0
αA −r1Av2 +r2Aw2 = 0
αB −r1Bv2 +r2Bw2 = 0
αB −r1Bv3 −r2Bw3 = 0
αC −r1Cv3 −r2Cw3 = 0
αC +r1Cv4 −r2Cw4 = 0
αD +r1Dv4 −r2Dw4 = 0
αD +r1Dv1 +r2Dw1 = 0
f1v1 +f2w1 = 1
(1− f1)v2 +f2w2 = 1
(1− f1)v3 +(1− f2)w3 = 1
f1v4 +(1− f2)w4 = 1.

(2.3.11)

This system imposes the condition that each of the 4 rays must intersect one vertex of the
parametric octahedron. If such a parametric octahedron exists, i.e. the solution to (2.3.11)
satisfies α, v, w ≥ 0. In Figure 2.5 an example of a facet from a Quadrilateral parametric
octahedron is shown.

Cornuéjols and Margot in [27] study intersection cuts obtained from two rows of the
simplex tableau and give conditions for the cuts to be facets of the Integer Hull Quadrilateral
cuts. The following is their Theorem 9:

Theorem 2.3.2. (Cornuéjols and Margot, 2009) Consider a maximal lattice-free quadrilat-
eral with vertices pj, integral point qj on edge pjpj+1 (indices taken modulo 4) an corner rays
rj, j = 1, . . . , 4. The corresponding quadrilateral inequality defines a facet of the Integer Hull
if and only if there is no t ∈ R+ such that the integral point kj divides the edge joining pj to
pj+1 in a ratio t for odd j and in a ratio 1/t for even j, i.e.

||kj − pj||
||kj − pj+1||

{
t for j = 1, 3
1/t for j = 2, 4

(2.3.12)

As stated in [27], the ratio condition (2.3.12) is equivalent to the following condition on
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Figure 2.5: Facet from a Quadrilateral Pocta

pj, kj, j = 1, . . . , 4:

+βp1 +(1− β)p4 = k1
βp1 +(1− β)p2 = k2

+(1− β)p2 +βp3 = k3
+βp3 +(1− β)p4 = k4

(2.3.13)

for some β : 0 < β < 1.
For the type of quadrilaterals we generate with the Disjunctive Hull framework the inte-

gral points kj, j = 1, . . . , 4 are the vertices of the unit cube K indexed as

k1 = (0, 0).
k2 = (1, 0);
k3 = (1, 1);
k4 = (0, 1);

(2.3.14)

Suppose rA, rB, rC , rD are such that they produce a quadrilateral that satisfies (2.3.13).
By Theorem 2.3.2, the quadrilateral cut is not a facet of the integer hull PI . We now link
together the quadrilateral cuts obtained from the Disjunctive Hull and the previous result.

Proposition 2.3.3. A set of 4 rays for which the ratio condition (2.3.12) is satisfied, does
not yield a basic solution to the CGLP corresponding to a quadrilateral cut.

Proof. After eliminating αA, αB, αC , αD from (2.3.11) we obtain the system of 8 equations
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in 8 variables v, w
+r1Av1 + r1Av2 +r2Aw1 − r2Aw2 = 0
−r1Bv2 + r1Bv3 +r2Bw2 + r2Bw3 = 0
−r1Cv3 − r1Cv4 −r2Cw3 + r2Cw4 = 0
−r1Dv1 + r1Dv4 −r2Dw1 − r2Dw4 = 0
f1v1 +f2w1 = 1
(1− f1)v2 +f2w2 = 1
(1− f1)v3 +(1− f2)w3 = 1
f1v4 +(1− f2)w4 = 1.

(2.3.15)

Assuming unit length rays we have

pj = f + rj, j = 1, . . . , 4. (2.3.16)

Substituting (2.3.14) and (2.3.16) in (2.3.13) we get that when the ratio condition holds, the
rays must satisfy

r1B =
f1−1+βr1A

β−1

r2B =
f2+βr2A
β−1

r1C = r1A
r2C =

1+βr2A
β

r1D =
f1+βr1A
β−1

r2D = r2B.

(2.3.17)

After substituting the expressions for rj’s, the coefficient matrix of (2.3.15) becomes

r1A r1A 0 0 r2A −r2A 0 0

0 −f1−1+βr1A
β−1

f1−1+βr1A
β−1

0 0
f2+βr2A
β−1

f2+βr2A
β−1

0

0 0 −r1A −r1A 0 0 −1+βr2A
β

1+βr2A
β

−f1+βr1A
β−1

0 0
f1+βr1A
β−1

−f2+βr2A
β−1

0 0 −f2+βr2A
β−1

f1 0 0 0 f2 0 0 0
0 1− f1 0 0 0 f2 0 0
0 0 1− f1 0 0 0 1− f2 0
0 0 0 f1 0 0 0 1− f2


(2.3.18)

The matrix (2.3.18) is singular since, for example, the last row can be obtained from the
rows j = 1, . . . , 7 using multipliers µj where µ1 = β;µ2 = β − 1;µ3 = β;µ4 = β − 1;µ5 =
1;µ6 = −1;µ7 = 1. Since the coefficient matrix is singular, it cannot be a basic solution to
the CGLP associated with the 4 rays that yields the non-facet quadrilateral cuts.

Degenerate quadrilateral facets

For these facets the set Lα and the parametric octahedron defined by the values of v, w do
not coincide. The configuration of the rays rA, rB, rC , rD differs from before in that now one
edge of K is not intersected by any of the four rays. Assume that this edge is {(0, 0), (1, 0)}
and let rA, rB be the rays defining the K-vertex cone for (0, 0) and (1, 0). The reasoning
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that follows can be easily extended to the other 3 edges of K by symmetry.
One way to ensure that we produce a facet for PI we enforce the following conditions from
Proposition 2.3.1:

∃λ(0,0), 0 ≤ λ(0,0) ≤ 1 : (0, 0) = f + λ(0,0)
rA
αA

+ (1− λ(0,0))
rB
αB

∃λ(1,0), 0 ≤ λ(1,0) ≤ 1 : (1, 0) = f + λ(1,0)
rA
αA

+ (1− λ(1,0))
rB
αB

.
(2.3.19)

This condition can only be satisfied if the two facets of the parametric octahedron corre-
sponding to the vertices (0, 0) and (1, 0) coincide, thus making the parametric octahedron a
triangle of type 1 or 2. For a triangle of type 1 to yield a facet for PI one of the rays rA or
rB must intersect either (0, 0) or (2, 0). This is a special case and is therefore not considered
here, since it is less recurring. We assume that the parametric octahedron defines a triangle
of type 2.

We have that the facets of Pocta going through (0, 0) and (1, 0) are determined by solving
the system of 6 equations in the variables αA, αB, v1, w1, v2, w2.

αA +r1Av1 +r2Aw1 = 0
αA −r1Av2 +r2Aw2 = 0
αB +r1Bv1 +r2Bw1 = 0
αB −r1Bv2 +r2Bw2 = 0
f1v1 +f2w1 = 1
(1− f1)v2 +f2w2 = 1

(2.3.20)

Let ᾱA, ᾱB, v̄1, w̄1, v̄2, w̄2 denote the solution to (2.3.20).
We need to consider 3 different cases, according to the positions of the rays rC , rD. Let

vA, vB, vC , vD denote the intersection points of the rays rA, rB, rC , rD with the parametric
octahedron.

1. The rays rC and rD both intersect the edge {(1, 1), (0, 1)}. In this case the points we
can have the following configurations

(a) vC lies on the parametric octahedron facet corresponding to (0, 1) and vD lies on
the facet corresponding to (1, 1) (an example is given in Figure 2.6(a));

(b) both vC and vD lie on the parametric octahedron facet corresponding to (0, 1) (an
example is given in Figure 2.6(b));

(c) both vC and vD lie on the parametric octahedron facet corresponding to (1, 1) (an
example is given in Figure 2.6(c)).

We determine the values for v3, w3 for which the facet corresponding to (1, 1) intersects
rB in vB, and the values for v4, w4 for which the facet corresponding to (0, 1) intersects
rA in vA by solving the system of linear equations in 4 variables

−r1Bv3 −r2Bw3 = −ᾱB

+r1Av4 −r2Aw4 = −ᾱA

(1− f1)v3 +(1− f2)w3 = 1
f1v4 +(1− f2)w4 = 1.
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Let v̄3, w̄3, v̄4, w̄4 be the solution to the system above. To determine the value of αC

and αD we can apply a lifting procedure such as the one described later in 2.3.4. The
values for αC and αD are computed as follows

αC = max{ r1C v̄3 + r2Cw̄3 ; −r1C v̄4 + r2Cw̄4 },
αD = max{ r1Dv̄3 + r2Dw̄3 ; −r1Dv̄4 + r2Dw̄4 }.

In all three configurations we obtain a facet for PI . For case (a) the facet is generated
from the four rays and can be easily seen that all the four vertices of K can be ex-
pressed as convex combination of the points vA, vB, vC , vD. For the case (b) we can still
exhibit four integral points but this time not all four vertices of K are covered. In this
circumstance we have that the point (0, 1) can be expressed as a convex combination
of vA and vC and also as a convex combination of the points vA and vD. Similarly for
case (c) the vertex of the cube (1, 1) can be obtained by two convex combinations, the
first is by the points vB and vD and the second is other by the points vB and vD.

(a)

(b) (c)

Figure 2.6: Degenerate Quadrilateral configurations for case 1

2. The ray rC intersects the edge {(1, 1), (0, 1)} and rD intersects the edge {(0, 1), (0, 0)}.
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In this case the points we can have the following possibile configurations

(a) vD lies on the parametric octahedron facet corresponding to (0, 1) (an example is
given in Figure 2.7(a));

(b) vD lies on the parametric octahedron facet corresponding to (0, 0) (an example is
given in Figure 2.7(b)).

We determine the values for v3, w3 for which the facet corresponding to (1, 1) intersects
rB in vB, and the values for v4, w4 for which the facet corresponding to (0, 1) intersects
both rC and the facet corresponding to (1, 1) in vC by solving the system of linear
equations in 5 variables

−r1Bv3 −r2Bw3 = −ᾱB

αC − r1Cv3 −r2Cw3 = 0
αC + r1Cv4 −r2Cw4 = 0
(1− f1)v3 +(1− f2)w3 = 1
f1v4 +(1− f2)w4 = 1.

Let ᾱC , v̄3, w̄3, v̄4, w̄4 be the solution to the system above. To determine the value of
αD we just need to apply a similar procedure to that described at 2.3.4 for Lifting.
The value for αD is computed as follows

αD = max{ −r1Dv̄3 − r2Dw̄3 ; −r1Dv̄4 + r2Dw̄4 }.

Following the same reasoning used for case 1, we can show that the considered config-
urations for case 2 yield facets of PI .

(a) (b)

Figure 2.7: Degenerate Quadrilateral configurations for case 2

3. The ray rC intersects the edge {(1, 0), (1, 1)} and rD intersects the edge {(1, 1), (0, 1)}
(symmetric of case 2). In this case we can hae the following possible configurations
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(a) vC lies on the parametric octahedron facet corresponding to (1, 1) (an example is
given in Figure 2.8(a));

(b) vC lies on the parametric octahedron facet corresponding to (1, 0) (an example is
given in Figure 2.8(b)).

We determine the values for v4, w4 for which the facet corresponding to (0, 1) intersects
rA in vA, and the values for v3, w3 for which the facet corresponding to (1, 1) intersects
both rD and the facet corresponding to (0, 1) in vD by solving the system of linear
equations in 5 variables

r1Bv4 −r2Bw4 = −ᾱB

αD − r1Dv3 −r2Dw3 = 0
αD + r1Dv4 −r2Dw4 = 0
(1− f1)v3 +(1− f2)w3 = 1
f1v4 +(1− f2)w4 = 1.

Let ᾱD, v̄3, w̄3, v̄4, w̄4 be the solution to the system above. To determine the value of
αC we just need to apply a similar procedure to that described at 2.3.4 for Lifting.
The value for αC is computed as follows

αC = max{ r1C v̄2 − r2Cw̄2 ; r1C v̄3 + r2Cw̄3 }.

Following the same reasoning used for case 1, we can show that the considered config-
urations for case 3 yield facets of PI .

(a) (b)

Figure 2.8: Degenerate Quadrilateral configurations for case 3

As for the case of Non-Degenerate cuts, the Proposition 2.3.1 ensures that the cut we
generate after lifting the remaining rays is a facet for PI .

There exist other types of Degenerate Quadrilateral cuts that cannot be derived by the
systems above. Previously we restricted the choice of the 4 rays by requiring rA, rB to
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satisfy (2.3.19). But facets for PI might also be derived when rA, rB satisfy the following
more general condition:

∃λ1, 0 ≤ λ1 ≤ 1 : (y1, y2) = f + λ1
rA
αA

+ (1− λ1)
rB
αB

∃λ2, 0 ≤ λ2 ≤ 1 : (y′1, y
′
2) = f + λ2

rA
αA

+ (1− λ2)
rB
αB

.
(2.3.21)

where (y1, y2), (y
′
1, y

′
2) ∈ Z2 are two adjacent points in the lattice Z2, i.e. (y1, y2) ∈ Z2 and

either y′1 = y1 ∧ y′2 = y2 + 1 or y′1 = y1 + 1 ∧ y′2 = y2. These points might be general integer
points, different than the vertices of K.
In this chapter we do not study further this more general class of Degenerate Quadrilateral
facets.

Outline of the procedures to generate facets of PI

In this section we give the pseudo-code for two procedures that can be used to produce valid
facets of the Integer Hull. The procedures are parametrized with the rays rj, j ∈ J and the
fractional solution f = (f1, f2).

The procedure will select 4 rays among the |J | available that satisfy some specified
criteria and build a system of linear equations on (α, v, w) variables that is then solved. If
the solution is feasible, i.e. α, v, w ≥ 0, then a facet of the Integer Hull is obtained. Lifting
of the coefficients for the remaining rays is then applied.
To simplify notation let CGLP(rj, i) with j ∈ J , i ∈ {1 . . . 4} identify the inequality in the
MIP CGLP corresponding to ray rj and the facet of the parametric octahedron going through
the i-th vertex of K and let NORM(i) with i ∈ {1 . . . 4} be the normalization constraint
associated with the i-th facet of the parametric octahedron of the MIP CGLP.

In the procedure GenerateNonDegenerateQuadrilateralFacet we describe how to obtain
a Non-degenerate Quadrilateral facet and in the procedure GenerateDegenerateQuadrilater-
alFacet we describe how to obtain a Degenerate Quadrilateral facet.

Every time we run one of the two procedures and a cut is generated, we can remove
one of the chosen rays from the set {rj, j ∈ J} so that we ensure that the same cut will
not be generated in future calls. This does not allow to consider all the possibilities, but it
suffices for an heuristic procedure which aims to generate a fixed number of facets. Moreover
randomization in the ray selection can also be added.
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GenerateNonDegenerateQuadrilateralFacet({rj, j ∈ J} , f)

1 rA, rB, rC , rD ← NULL
2 i← 1;
3 for i← 1 up to |J |
4 do
5 if (rA == NULL) ∧ (ri ∈ int(cone(q1, q2)))
6 then rA ← ri
7 if (rB == NULL) ∧ (ri ∈ int(cone(q2, q3)))
8 then rB ← ri
9 if (rC == NULL) ∧ (ri ∈ int(cone(q3, q4)))
10 then rC ← ri
11 if (rD == NULL) ∧ (ri ∈ int(cone(q4, q1)))
12 then rD ← ri
13 if (rA == NULL) ∨ (rB == NULL) ∨ (rC == NULL) ∨ (rD == NULL)
14 then error (“There are not enough rays satisfying the required conditions”)
15 else Solve the system in the variables (αA, αB, αC , αD, v, w) and the equations:

CGLP(rA, 1); CGLP(rA, 2)
CGLP(rB, 2); CGLP(rB, 3)
CGLP(rC , 3); CGLP(rC , 4)
CGLP(rD, 4); CGLP(rD, 1)
NORM(1);NORM(2);NORM(3);NORM(4);

16 if system has a solution
17 then if the solution satisfies (v, w) ≥ 0
18 then return (α, v, w)
19 else error (“The chosen rays do not produce a cut”)
20 else error (“System of equation does not have a solution”)
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GenerateDegenerateQuadrilateralFacet({rj, j ∈ J} , f)

1 rA, rB, rC , rD ← NULL
2 y ← a random number from {1 . . . 4}
3 q′1 ← qy
4 q′2 ← qy+1

5 q′3 ← qy+2

6 q′4 ← qy+3

7 rA, rB ← two rays that satisfy the conditions:
1) q′1, q

′
2 ∈ int(cone(rA, rB))

2) q′3, q
′
4 /∈ int(cone(rA, rB))

3) the sign patterns of rA and rB differ in exactly one component
8 rC , rD ← two rays that satisfy one of the following sets of conditions:

a) a1) rC , rD ∈ int(cone(q′3, q
′
4))

b)

{
b1) rC ∈ int(cone(q′3, q

′
4))

b2) rD ∈ int(cone(q′4, q
′
1))

c)

{
c1) rC ∈ int(cone(q′2, q

′
3))

c2) rD ∈ int(cone(q′3, q
′
4))

9 if (rA == NULL) ∨ (rB == NULL) ∨ (rC == NULL) ∨ (rD == NULL)
10 then error (“There are not enough rays satisfying the required conditions”)
11 if at step 8 the chosen rays satisfy conditions in a)
12 then Solve the system in the 10 variables (αA, αB, v, w) with the 10 equations:

CGLP(rA, 1
′); CGLP(rA, 2

′); CGLP(rA, 4
′);

CGLP(rB, 1
′); CGLP(rB, 2

′); CGLP(rB, 3
′);

NORM(1);NORM(2);NORM(3);NORM(4);
and determine the value of αC , αD by lifting.

13 if at step 8 the chosen rays satisfy conditions in b)
14 then Solve the system in the 11 variables (αA, αB, αC , v, w) with the 11 equations:

CGLP(rA, 1
′); CGLP(rA, 2

′);
CGLP(rB, 1

′); CGLP(rB, 2
′); CGLP(rB, 3

′)
CGLP(rC , 3

′); CGLP(rC , 4
′);

NORM(1);NORM(2);NORM(3);NORM(4);
and determine the value of αD by lifting.

15 if at step 8 the chosen rays satisfy conditions in c)
16 then Solve the system in the 11 variables (αA, αB, αD, v, w) with the 11 equations:

CGLP(rA, 1
′); CGLP(rA, 2

′); CGLP(rA, 4
′)

CGLP(rB, 1
′); CGLP(rB, 2

′);
CGLP(rD, 3

′); CGLP(rD, 4
′);

NORM(1);NORM(2);NORM(3);NORM(4);
and determine the value of αC by lifting.

17 return (α, v, w)
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2.3.4 Lifting

The procedures given in 2.3.3 select rays that yield feasible configurations of the parametric
octahedron that can be used to derive facets for PI . Together with the values for v, w defining
the parametric octahedron we also compute the coefficients of the facet for the 4 chosen rays.
Lifting must be applied to determine the coefficients of the facet generated by the parametric
octahedron for the remaining rays.

Definition For a triangle or quadrilateral facet αs ≥ 1 of PI we call the rays required to
produce it generating rays and the remaining rays lifted rays.

Definition Let rk, k ∈ T be a collection of generating rays for a facet αs ≥ 1 and let v̄, w̄ be
the values for the associated parametric octahedron Pocta(v̄, w̄). Let Fi, i ∈ {1 . . . 4} identify
the facet of Pocta(v̄, w̄) corresponding to the i-th vertex of K. We say that the parametric
octahedron is flexible if for some i ∈ {1 . . . 4} there exists v′i, w

′
i ≥ 0 with v′i 6= v̄i, w

′
i 6= w̄i

and satisfying the i-th β-constraint, the parametric octahedron with the modified parameters
produces the same coefficients for rk, k ∈ T , otherwise we say that is rigid.

Simply put, a parametric octahedron is flexible when one of its facets can be tilted so that
the cut produced in the space of its generating rays remains the same. In Figures 2.9(a)
and 2.9(b) we present a cut that exhibits this property. The parametric octahedron facet
corresponding to the vertex (0, 1) can be tilted as shown, and the two different parametric
octahedrons yield the same cut. Two rigid parametric configurations are shown in Figures
2.9(c) and 2.9(d), for these cases no facet of the parametric octahedron can be tilted without
modifying the α coefficients. The values for the v, w parameters are shown on top of each
figure.

For the case of a flexible parametric octahedron the sequence used in lifting matters,
while it does not for the case of a rigid parametric octahedron. Consider the rays rA, rB, rC
and the flexible parametric octahedrons they define in Figures 2.9(a), 2.9(b). In Figures
2.9(c), 2.9(d) two different cuts are obtained depending on the order used to lift rays rD and
rE. In Figure 2.9(c) the ray rD is lifted first and rE last, while in Figure 2.9(d) the ray rD is
lifted last and rE first. Note that after rD or rE had been lifted the parametric octahedrons
become rigid.

Given v̄, w̄ defining a rigid parametric octahedron, the lifted coefficient αj for a ray rj is
computed as follows: let āj be the maximum value such that the point p = f + ājrj belongs
to Pocta(v̄, w̄), and set ᾱj = 1

āj
. By Proposition 2.2.2 The coefficient αj for the j-th ray is

given by
ᾱj = max{ ᾱ1

j = −r1j v̄1 − r2j w̄1;
ᾱ2
j = +r1j v̄2 − r2j w̄2;

ᾱ3
j = +r1j v̄3 + r2j w̄3;

ᾱ4
j = −r1j v̄4 + r2j w̄4}.

(2.3.22)

The next proposition is similar to the ray elimination procedure of [27].

Proposition 2.3.4. A basic solution to the CGLP for a 2-row instance with n rays can be
lifted to a basic solution to the same instance amended with an extra ray rn+1 in which the
new variable αn+1 is given by (2.3.22) and all the other variables keep the same values.
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(a) Flexible Pocta configuration 1 (b) Flexible Pocta configuration 2

(c) Rigid Pocta configuration 1 (d) Rigid Pocta configuration 2

Figure 2.9: Flexible and rigid parametric octahedron configurations
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Proof. Adding the new ray amends the CGLP built from the original 2-row instance with
4 new constraints, one per orthant-cone (with relative slack variables tin+1, i ∈ {1, . . . , 4}),
and a new αn+1 variable unrestricted in sign. Let k ∈ {1, . . . , 4} be an index for which ᾱn+1

attains its max in (2.3.22). The new basis is constructed from the old basis plus the variable
αn+1 and the 3 slack variables associated to the new constraints of all orthant cones but
the k-th one. Letting αn+1 be equal to the expression (2.3.22), and tin+1 = αn+1 − αi

n+1, i ∈
{1, . . . , 4} \ k, yields a basic feasible solution.

Theorem 2.2.11 guarantees that using (2.3.22) the lifted inequality from a facet of the
integer hull is still a facet of the integer hull with the added ray.

2.3.5 Strengthening

Given a facet αs ≥ 1 computed using the Disjunctive Hull approach, if some non-basic
variable sj is required to be integral in the original problem formulation, then the cut could
be strengthened. In this section we describe a technique that can be used to strengthen a
cut based on a modification of the CGLP for the 4-term disjunction.

Let J1 be the set of indices of those non-basic variables subject to integrality constraints
in the original formulation and let J2 = J \J1 be the set of the remaining non-basic variables.
From now on we will work with the following definition for PI :

PI = {(x, s) : x1 = f1 +
∑

j∈J1 r
1
jsj +

∑
j∈J2 r

1
jsj

x2 = f2 +
∑

j∈J1 r
2
jsj +

∑
j∈J2 r

2
jsj

sj ≥ 0 j ∈ J1 ∪ J2
x1, x2 ∈ Z
sj ∈ Z j ∈ J1
sj ∈ R j ∈ J2 }.

(2.3.23)

We have the following

Proposition 2.3.5. If the disjunction(
−r1s ≥ f1
−r2s ≥ f2

)
∨
(
r1s ≥ 1− f1
−r2s ≥ f2

)
∨
(
r1s ≥ 1− f1
r2s ≥ 1− f2

)
∨
(
−r1s ≥ f1
r2s ≥ 1− f2

)
(2.3.24)

is valid for PI , s, t ≥ 0 and s ∈ Z|J1| then so is the disjunction
−
∑
j∈J1

(r1j −m1
j)sj −

∑
j∈J2

r1jsj ≥ f1

−
∑
j∈J1

(r2j −m2
j)sj −

∑
j∈J2

r2jsj ≥ f2

 ∨

∑
j∈J1

(r1j −m1
j)sj +

∑
j∈J2

r1jsj ≥ 1− f1

−
∑
j∈J1

(r2j −m2
j)sj −

∑
j∈J2

r2jsj ≥ f2

∨

∑
j∈J1

(r1j −m1
j)sj +

∑
j∈J2

r1jsj ≥ 1− f1∑
j∈J1

(r2j −m2
j)sj +

∑
j∈J2

r2jsj ≥ 1− f2

 ∨

−
∑
j∈J1

(r1j −m1
j)sj −

∑
j∈J2

r1jsj ≥ f1∑
j∈J1

(r2j −m2
j)sj +

∑
j∈J2

r2jsj ≥ 1− f2


(2.3.25)
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for any m1
j ,m

2
j ∈ Z, j ∈ J1.

Proof. Assume for the sake of contradiction that m̄1
j , m̄

2
j ∈ Z, j ∈ J1 violate the disjunction

(2.3.25). This implies that there exists a solution (x, s) ∈ PI with x ∈ Z2 such that for some
i ∈ {1, 2} the condition(

−
∑
j∈J1

(rij − m̄i
j)sj −

∑
j∈J2

rijsj < fi

)
∧

(∑
j∈J1

(rij − m̄i
j)sj +

∑
j∈J2

rijsj < 1− fi

)
(2.3.26)

holds. We can rewrite (2.3.26) as∑
j∈J1

rijsj +
∑
j∈J2

rijsj + fi − 1 <
∑
j∈J1

m̄i
jsj <

∑
j∈J1

rijsj +
∑
j∈J2

rijsj + fi

i.e.
xi − 1 <

∑
j∈J1

m̄i
jsj < xi. (2.3.27)

But
∑

j∈J1 m̄
i
jsj is integral and by (2.3.27) is required to be strictly between two consecutive

integral numbers xi − 1 and xi. Hence, we reached a contradiction.

Theorem 2.3.6. Given (v̄, w̄) ≥ 0 defining a parametric octahedron, the cut αs ≥ 1 can be
strengthened to ᾱs ≥ 1 with coefficients ᾱj, j ∈ J1 given by the Mixed Integer Program

min αj

αj −v̄1m1
j − w̄1m

2
j ≥ −r1j v̄1 − r2j w̄1

αj +v̄2m
1
j − w̄2m

2
j ≥ +r1j v̄2 − r2j w̄2

αj +v̄3m
1
j + w̄3m

2
j ≥ +r1j v̄3 + r2j w̄3

αj −v̄4m1
j + w̄4m

2
j ≥ −r1j v̄4 + r2j w̄4

m1
j ,m

2
j ∈ Z.

(2.3.28)

The coefficients associated with non-basic continuous variables remain the same, i.e. ᾱj =
αj, j ∈ J as given in (2.2.9).

Proof. Validity of ᾱs ≥ 1 follows from Proposition 2.3.5.

Solving at optimality (2.3.28) is an easy task. Note that the polyhedron associated to
the linear relaxation of (2.3.28) is a translated cone having apex (αj,m

1
j ,m

2
j) = (0, r1j , r

2
j ),

which is also the optimal solution to the linear relaxation. As proven in Theorem 2.3.9, the
optimal solution to (2.3.28) is attained at one of the following four possible combinations of
values for (m1

j ,m
2
j): {

(br1j c, br2j c); (br1j c, dr2j e); (dr1j e, br2j c); (dr1j e, dr2j e)
}
.

Equivalently, the coefficients ᾱj, j ∈ J1 of ᾱs ≥ 1 are computed as ᾱj = max{ᾱ1
j ; ᾱ

2
j ; ᾱ

3
j ; ᾱ

4
j}
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where we denote
ᾱ1 = −(r1 −m1)v̄1 −(r2 −m2)w̄1

ᾱ2 = +(r1 −m1)v̄2 −(r2 −m2)w̄2

ᾱ3 = +(r1 −m1)v̄3 +(r2 −m2)w̄3

ᾱ4 = −(r1 −m1)v̄4 +(r2 −m2)w̄4

m1,m2 ∈ Z.

(2.3.29)

In the rest of this section we omit the index j from rj and αj.

Lemma 2.3.7. The values ᾱk, k ∈ {1, . . . , 4}, can be expressed as the convex combinations

ᾱ1 = λ1

(
−(r1 −m1) 1

f1

)
+(1− λ1)

(
−(r2 −m2) 1

f2

)
ᾱ2 = λ2

(
(r1 −m1) 1

1−f1

)
+(1− λ2)

(
−(r2 −m2) 1

f2

)
ᾱ3 = λ3

(
(r1 −m1) 1

1−f1

)
+(1− λ3)

(
(r2 −m2) 1

1−f2

)
ᾱ4 = λ4

(
−(r1 −m1) 1

f1

)
+(1− λ4)

(
(r2 −m2) 1

1−f2

)
with λ1 = v̄1f1; λ2 = v̄2(1− f1); λ3 = v̄3(1− f1); λ4 = v̄4f1.

Proof. Let λ1 = v̄1f1. From f1v̄1 + f2w̄1 = 1 and v̄1, w̄1 ≥ 0 we get v̄1 = λ1
1
f1

and w̄1 =

(1−λ1)
1
f2

with 0 ≤ λ1 ≤ 1. Substituting the terms v̄1 and w̄1 in the ᾱ1 expression in (2.3.29)
we get the first equation.
The other cases are similar.

Definition Let r̄i = ri−mi,mi ∈ Z, i ∈ {1, 2}. We say that r̄ = (r̄1, r̄2) is a modularization
of the ray r = (r1, r2). Moreover we say that r̄ is a standard modularization of r if

(m1,m2) ∈
{
(br1c, br2c); (br1c, dr2e); (dr1e, br2c); (dr1e, dr2e)

}
. (2.3.30)

Lemma 2.3.8. There exists a standard modularization r̄ of the ray r such that

0 ≤ fi + r̄i ≤ 1, i ∈ {1, 2} (2.3.31)

i.e. the point (f + r̄) belongs to K.

Proof. If fi + ri − bric ≤ 1 then set let mi = bric, note that the condition fi + ri − bric ≥ 0
follows since 0 ≤ fi ≤ 1 and ri − bric ≥ 0. Otherwise (fi + ri − bric > 1) let mi = drie and
from fi ≤ 1 and ri − bric ≤ 1 we get 0 ≤ fi + ri − bric − 1 = fi + ri − drie ≤ 1.

Lemma 2.3.9. The optimal solution to the problem obtained from (2.3.28) by adding the
restriction (2.3.30) satisfies 0 ≤ ᾱ ≤ 1.

Proof. For any m1,m2 at least one ᾱk, k ∈ {1, . . . , 4} is non-negative since v̄, w̄ ≥ 0 and
therefore ᾱ ≥ 0. We prove the second inequality we exhibit a solution to (2.3.28) such that
ᾱ ≤ 1. Let (m̄1, m̄2) be a pair in (2.3.30) corresponding to a standard modularization r̄ of r
that satisfies (2.3.31). By Lemma 2.3.8 such pair exists. We distinguish 4 cases:

• Case (m̄1, m̄2) = (br1c, br2c). Note that r̄i = ri − m̄i ≥ 0, i ∈ {1, 2}. We have the
following upper bounds on the values ᾱk, k ∈ {1, . . . , 4}:
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ᾱ1 = −r̄1v̄1 − r̄2w̄1 ≤ 0.

ᾱ2 = +r̄1v̄2− r̄2w̄2 ≤ r̄1 1
1−f1

. From (2.3.31) we get r̄1 1
1−f1
≤ (1−f1)

1
1−f1

= 1 therefore
ᾱ2 ≤ 1.

ᾱ3 = λ3r̄
1 1
1−f1

+ (1 − λ3)r̄
2 1
1−f2

for 0 ≤ λ3 ≤ 1 by Lemma 2.3.7. From (2.3.31),

r̄i 1
1−fi
≤ (1− fi)

1
1−fi

= 1, i ∈ {1, 2} holds, therefore ᾱ3 ≤ 1.

ᾱ4 = −r̄1v̄4+ r̄2w̄4 ≤ r̄2 1
1−f2

. From (2.3.31) we get r̄2 1
1−f2
≤ (1−f2)

1
1−f2

= 1 therefore
ᾱ4 ≤ 1.

• Case (m̄1, m̄2) = (br1c, dr2e). Note that r̄1 = r1 − m̄1 ≥ 0 and r̄2 = r2 − m̄2 ≤ 0. We
have the following upper bounds on the values ᾱk, k ∈ {1, . . . , 4}:

ᾱ1 = −r̄1v̄1− r̄2w̄1 ≤ −r̄2 1
f2
. From (2.3.31) we get −r̄2 1

f2
≤ f2

1
f2

= 1 therefore ᾱ1 ≤ 1.

ᾱ2 = λ2(r̄
1 1
1−f1

) + (1 − λ2)(−r̄2 1
f2
) for 0 ≤ λ2 ≤ 1 by Lemma 2.3.7. From (2.3.31),

r̄1 1
1−f1
≤ (1− f1)

1
1−f1

= 1 and −r̄2 1
f2
≤ f2

1
f2

= 1 hold, therefore ᾱ2 ≤ 1.

ᾱ3 = +r̄1v̄3+ r̄2w̄3 ≤ r̄1 1
1−f1

. From (2.3.31) we get r̄1 1
1−f1
≤ (1−f1)

1
1−f1

= 1 therefore
ᾱ3 ≤ 1.

ᾱ4 = −r̄1v̄4 + r̄2w̄4 ≤ 0.

• Case (m̄1, m̄2) = (dr1e, br2c). Note that r̄1 = r1 − m̄1 ≤ 0 and r̄2 = r2 − m̄2 ≥ 0. We
have the following upper bounds on the values ᾱk, k ∈ {1, . . . , 4}:

ᾱ1 = −r̄1v̄1− r̄2w̄1 ≤ −r̄1 1
f1
. From (2.3.31) we get −r̄1 1

f1
≤ f1

1
f1

= 1 therefore ᾱ1 ≤ 1.

ᾱ2 = +r̄1v̄2 − r̄2w̄2 ≤ 0.

ᾱ3 = +r̄1v̄3+ r̄2w̄3 ≤ r̄2 1
1−f2

. From (2.3.31) we get r̄2 1
1−f2
≤ (1−f2)

1
1−f2

= 1 therefore
ᾱ3 ≤ 1.

ᾱ4 = λ4(−r̄1 1
f1
) + (1 − λ4)(r̄

2 1
1−f2

) for 0 ≤ λ4 ≤ 1 by Lemma 2.3.7. From (2.3.31),

−r̄1 1
f1
≤ f1

1
f1

= 1 and r̄2 1
1−f2
≤ (1− f2)

1
1−f2

= 1 hold, therefore ᾱ4 ≤ 1.

• Case (m̄1, m̄2) = (dr1e, dr2e). Note that r̄i = ri − m̄i ≤ 0, i ∈ {1, 2}. We have the
following upper bounds on the values ᾱk, k ∈ {1, . . . , 4}:

ᾱ1 = λ1(−r̄1 1
f1
) + (1 − λ1)(−r̄2 1

f2
) for 0 ≤ λ1 ≤ 1 by Lemma 2.3.7. From (2.3.31),

−r̄1 1
f1
≤ (f1)

1
f1

= 1 and −r̄2 1
f2
≤ (f2)

1
f2

= 1 hold, therefore ᾱ1 ≤ 1.

ᾱ2 = +r̄1v̄2 − r̄2w̄2 ≤ −r̄2 1
f2
. From (2.3.31) we get −r̄2 1

f2
≤ (f2)

1
f2

= 1 therefore
ᾱ2 ≤ 1.

ᾱ3 = +r̄1v̄3 + r̄2w̄3 ≤ 0.

ᾱ4 = −r̄1v̄4 + r̄2w̄4 ≤ −r̄1 1
f1
. From (2.3.31) we get −r̄1 1

f1
≤ (f1)

1
f1

= 1 therefore
ᾱ4 ≤ 1.

Since ᾱk ≤ 1, k ∈ {1, . . . , 4} we get α = max{ᾱ1, ᾱ2, ᾱ3, ᾱ4} ≤ 1.

Theorem 2.3.10. The optimal solution to (2.3.28) is attained for at least one of the four
pairs of values for (m1,m2) in (2.3.30)
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Proof. Let (α∗, α∗
1, α

∗
2, α

∗
3, α

∗
4,m

1∗,m2∗) be an optimal solution to the problem obtained from
(2.3.28) by adding the restriction (2.3.30). By Lemma 2.3.9, α∗ ≤ 1. Assume that the
optimal solution is such that m1∗ = br1c, m2∗ = br2c, the proof for the other cases is
analogous. Increasing the current value of m1∗ by one unit brings us to case m1∗ = dr1e,
m2∗ = br2c. Similarly if only m2∗ is increased or both m1∗ and m2∗ are increased. So we are
left to prove that any value m1′ < m1∗ or m2′ < m2∗ yields a coefficient α′ with α′ ≥ α∗.
Let mi′ = mi∗ − di, di ≥ 0, di ∈ Z, i.e. the value mi∗ decreased by di units, furthermore
denote r̄i = ri−mi∗ ; r̄i′ = ri−mi′ = r̄i+di for i ∈ {1, 2} and let α′

k be the new value αk for
k ∈ {1, . . . , 4} in (2.3.29) computed using mi′ instead of mi, i ∈ {1, 2}. Note that 0 ≤ r̄i ≤ 1
since we assumed mi∗ = bric, i ∈ {1, 2}.

If d1 ≥ 1∧ d2 ≥ 1. From the definitions we have r̄1′ = r̄1+ d1 ≥ 1∧ r̄2′ = r̄2+ d2 ≥ 1. By

Lemma 2.3.7 α′
3 = λ3

(
r̄1′ 1

1−f1

)
+ (1 − λ3)

(
r̄2′ 1

1−f2

)
and since r̄i′ 1

1−fi
≥ 1, i ∈ {1, 2}, α′

3 is

the convex combination of two terms greater or equal to 1 and therefore α′ ≥ α′
3 ≥ 1 ≥ α∗.

In the rest of the proof we can exclude the following occurrences:

• if α∗ = α∗
1 then α∗ = 0 since α∗

1 is the sum of two non positive terms. By Lemma 2.3.9
α∗ is optimal.

• if α∗ = α∗
3 then α′ ≥ α′

3 = α∗
3 + d1v̄3 + d2w̄3 ≥ α∗

3 = α∗.

therefore we only need to consider the cases when α∗ = α∗
2 or α∗ = α∗

4.
If d1 ≥ 1 ∧ d2 = 0 then in the case α∗ = α∗

2 we have α′ ≥ α′
2 = α∗

2 + d1v̄2 ≥ α∗
2 = α∗. In

the case α∗ = α∗
4 note that r̄

1′ 1
1−f1
≥ 1 holds since r̄1′ = r̄1+d1 ≥ 1. If also r̄2′ 1

1−f2
≥ 1 holds,

since α′
3 is a convex combination of two terms greater or equal to ,1 we get α′ ≥ α′

3 ≥ 1 ≥ α∗

by Lemma 2.3.9. Otherwise, 0 ≤ r̄2′ 1
1−f2

< 1, we have α∗ = α∗
4 = −r̄1v̄4 + r̄2w̄4 ≤ r̄2′w̄4 ≤

r̄2′ 1
1−f2

≤ λ3

(
r̄1′ 1

1−f1

)
+ (1 − λ3)

(
r̄2′ 1

1−f2

)
for any 0 ≤ λ3 ≤ 1. By Lemma 2.3.7 we have

α′
3 = λ3

(
r̄1′ 1

1−f1

)
+ (1− λ3)

(
r̄2′ 1

1−f2

)
, therefore α′ ≥ α′

3 ≥ α∗
4 = α∗.

If d1 = 0 ∧ d2 ≥ 1 the proof is analogous.

Example In the following numerical instance we show how strengthening is applied to the
cuts generated by the CGLP. Consider the instance

x1 = 1
3

+4
3
s1 +13

2
s2 −9

4
s3 −4

3
s4

x2 = 1
3

+7
2
s1 −7

3
s2 −7

6
s3 +5

4
s4

sj ≥ 0 j ∈ J
sj ∈ Z j ∈ J

(2.3.32)

where J = {1 . . . 4}.
We first relax the integrality constraints sj ∈ Zj ∈ J and then enumerating all possible

bases of the CGLP (2.3.4) normalized with β = 1, we determine the facets of the Disjunctive
Hull:

Cut 1 : 2.6745 s1 +7 s2 +3.5 s3 +2.4667 s4 ≥ 1
Cut 2 : 5.25 s1 +7 s2 +3.5 s3 +1.875 s4 ≥ 1
Cut 3 : 2 s1 +9.75 s2 +3.5 s3 +2.6216 s4 ≥ 1

(2.3.33)
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The values of v, w associated with the 3 cuts are:

Cut 1 : v = [ 0 0 1.1887 0.8353 ]; w = [ 3 3 0.3113 1.0824 ]
Cut 2 : v = [ 0 0 0 0 ]; w = [ 3 3 1.5 1.5 ]
Cut 3 : v = [ 0 1.5 1.5 1.0541 ]; w = [ 3 0 0 0.9730 ]

We now apply the strengthening procedure to Cut 1.
The values for v, w for Cut 1 are v = [0 0 1.1887 0.8353];w = [3 3 0.3113 1.0824].

• For the ray (r11, r
2
1) = (4

3
, 7
2
):

� choosing (m1
1,m

2
1) = (br11c, br21c) = (1, 3) yields ᾱ1 = 0.5519

� choosing (m1
1,m

2
1) = (br11c, dr21e) = (1, 4) yields ᾱ1 = 1.5

� choosing (m1
1,m

2
1) = (dr11e, br21c) = (2, 3) yields ᾱ1 = 1.0981

� choosing (m1
1,m

2
1) = (dr11e, dr21e) = (2, 4) yields ᾱ1 = 1.5

The minimum is attained for (m1
1,m

2
1) = (br11c, br21c) = (1, 3) that produces ᾱ1 =

0.5519.

• For the ray (r12, r
2
2) = (13

2
,−7

3
):

� choosing (m1
2,m

2
2) = (br12c, br22c) = (6,−3) yields ᾱ2 = 0.8019

� choosing (m1
2,m

2
2) = (br12c, dr22e) = (6,−2) yields ᾱ2 = 1

� choosing (m1
2,m

2
2) = (dr12e, br22c) = (7,−3) yields ᾱ2 = 1.1393

� choosing (m1
2,m

2
2) = (dr12e, dr22e) = (7,−2) yields ᾱ2 = 1

The minimum is attained for (m1
2,m

2
2) = (br12c, br22c) = (6,−3) that produces ᾱ2 =

0.8019.

• For the ray (r13, r
2
3) = (−9

4
,−7

6
):

� choosing (m1
3,m

2
3) = (br13c, br23c) = (−3,−2) yields ᾱ3 = 1.1509

� choosing (m1
3,m

2
3) = (br13c, dr23e) = (−3,−1) yields ᾱ3 = 0.8396

� choosing (m1
3,m

2
3) = (dr13e, br23c) = (−2,−2) yields ᾱ3 = 1.1108

� choosing (m1
3,m

2
3) = (dr13e, dr23e) = (−2,−1) yields ᾱ3 = 0.5

The minimum is attained for (m1
3,m

2
3) = (dr13e, dr23e) = (−2,−1) that produces ᾱ3 =

0.5.

• For the ray (r14, r
2
4) = (−4

3
, 5
4
):

� choosing (m1
4,m

2
4) = (br14c, br24c) = (−2, 1) yields ᾱ4 = 0.8703

� choosing (m1
4,m

2
4) = (br14c, dr24e) = (−2, 2) yields ᾱ4 = 2.25

� choosing (m1
4,m

2
4) = (dr14e, br24c) = (−1, 1) yields ᾱ4 = 0.549

� choosing (m1
4,m

2
4) = (dr14e, dr24e) = (−1, 2) yields ᾱ4 = 2.25
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The minimum is attained for (m1
4,m

2
4) = (dr14e, br24c) = (−1, 1) that produces ᾱ4 =

0.549.

So we obtained the strengthened cut

0.5519 s1 + 0.8019 s2 + 0.5 s3 + 0.549 s4 ≥ 1.

After applying the same procedure to the cuts 2 and 3 we get the following strengthened
cuts:

Strengthened cut 1 : 0.5519 s1 +0.8019 s2 +0.5 s3 +0.549 s4 ≥ 1
Strengthened cut 2 : 0.75 s1 +1 s2 +0.5 s3 +0.375 s4 ≥ 1
Strengthened cut 3 : 0.5 s1 +0.75 s2 +0.5 s3 +0.5946 s4 ≥ 1

(2.3.34)

We can compare the cuts in (2.3.34) with the Mixed Integer Gomory (GMI) cuts that
are obtained from x1, x2 :

GMI from x1 : 0.5 s1 +0.75 s2 +0.75 s3 +1 s4 ≥ 1
GMI from x2 : 0.75 s1 +1 s2 +0.5 s3 +0.375 s4 ≥ 1.

(2.3.35)

Notice that the GMI cut derived from x1 is dominated by the Strengthened cut 3 in
(2.3.34) and the GMI cut derived from x2 is the same as the Strengthened cut 2 in (2.3.34).

If we modularize the instance before generating the cuts it is possible to get different
and/or stronger inequalities. We now show this on the instance (2.3.32). We can modularize
(2.3.32) using the optimal choice of the m’s to obtain Cut 1 in (2.3.34) as follows:

x1 = 1
3

+(4
3
− b4

3
c)s1 +(13

2
− b13

2
c)s2 +(−9

4
− d−9

4
e)s3 +(−4

3
− d−4

3
e)s4

x2 = 1
3

+(7
2
− b7

2
c)s1 +(−7

3
− b−7

3
c)s2 +(−7

6
− d−7

6
e)s3 +(5

4
− b5

4
c)s4

sj ≥ 0 j ∈ J
sj ∈ Z j ∈ J

i.e.
x1 = 1

3
+1

3
s1 +1

2
s2 −1

4
s3 −1

3
s4

x2 = 1
3

+1
2
s1 +2

3
s2 −1

6
s3 +1

4
s4

sj ≥ 0 j ∈ J
sj ∈ Z j ∈ J.

(2.3.36)

As we did before, we relax the integrality constraints sj ∈ Zj ∈ J in (2.3.36) and then
enumerating all possible bases of the CGLP in (2.3.4) we determine all the facets of the
Disjunctive Hull:

Cut 1 : 0.5 s1 +0.75 s2 +0.5 s3 +0.4643 s4 ≥ 1
Cut 2 : 0.5725 s1 +0.75 s2 +0.5 s3 +0.4375 s4 ≥ 1
Cut 3 : 0.75 s1 +1 s2 +0.5 s3 +0.375 s4 ≥ 1

(2.3.37)

63



The values of v, w associated with the 3 cuts are:

Cut 1 : v = [ 0 0 1.5 0.4286 ]; w = [ 3 3 0 1.2857 ]
Cut 2 : v = [ 0 0 1.5 0.3 ]; w = [ 3 3 0 1.35 ]
Cut 3 : v = [ 0 0 0 0 ]; w = [ 3 3 1.5 1.5 ]

Comparing the cuts in (2.3.37) with the strengthened cuts in (2.3.34) we observe that
Cut 1 in (2.3.37) strictly dominates the Strengthened Cut 1 in (2.3.34); Cut 3 in (2.3.37) is
the same as the Strengthened cut 2 in (2.3.34) and Cut 2 is a new cut that is incomparable
to the cuts in (2.3.34).

The cuts produces here are different subce they depend on the values of v, w of the CGLP
which in turns depend on the instance itself. Modularizing the rays, changes the instance,
therefore it is no surprise that new combination of v, w are produced and consequently
different cuts. Note, though, that if one were to use a “fixed” parametric octahedron,
strengthening after the intersection cut is generated or using modularization with the same
values of m would yield the same cut.

The following is a different way to modularize (2.3.32):

x1 = 1
3

+(4
3
− b4

3
c)s1 +(13

2
− b13

2
c)s2 +(−9

4
− d−9

4
e)s3 +(−4

3
− d−4

3
e)s4

x2 = 1
3

+(7
2
− b7

2
c)s1 +(−7

3
− d−7

3
e)s2 +(−7

6
− d−7

6
e)s3 +(5

4
− b5

4
c)s4

sj ≥ 0 j ∈ J
sj ∈ Z j ∈ J

i.e.
x1 = 1

3
+1

3
s1 +1

2
s2 −1

4
s3 −1

3
s4

x2 = 1
3

+1
2
s1 −1

3
s2 −1

6
s3 +1

4
s4

sj ≥ 0 j ∈ J
sj ∈ Z j ∈ J.

(2.3.38)

The following are all the facets of the Disjunctive Hull:

Cut 1′ : 0.5 s1 +0.75 s2 +0.525 s3 +0.4643 s4 ≥ 1
Cut 2′ : 0.5 s1 +1 s2 +0.5 s3 +0.4643 s4 ≥ 1
Cut 3′ : 0.75 s1 +0.5 s2 +0.5 s3 +0.375 s4 ≥ 1

(2.3.39)

The values of v, w associated with the 3 cuts are:

Cut 1′ : v = [ 0.3 1.5 1.5 0.4286 ]; w = [ 2.7 0 0 1.2857 ]
Cut 2′ : v = [ 0 1.5 1.5 0.4286 ]; w = [ 3 0 0 1.2857 ]
Cut 3′ : v = [ 0 2 2.0769 0 ]; w = [ 3 0 0.1154 1.5 ]

Cut 1′ is weaker than Cut 1 of the previously modularized instance and Cut 3′ is stronger
than Cut 3. Cut 2′ can be further strengthened as 0.5 s1 + 0.75 s2 + 0.5 s3 + 0.4643 s4 ≥ 1
and it becomes the same as Cut 1.
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2.3.6 Initial experiments with Integer Hull facets

As of today, four computational studies, [15, 31, 30, 34], for cuts from multiple rows have
been published and procedures to derive them automatically are still under investigation.
The experiments by Dash et al. in [30] show that their cross cuts [29] add a non-trivial
improvement on top of the gap closed by the split closure. The other experiments suggest
that among all families of cuts considered, split cuts are the most useful ones. Espinoza shows
in his experiments that there might be some potential in using cuts from multiple rows. On
average they provide a 31% speedup on reaching optimality when using the additional cuts
with CPLEX.

We considered a collection of 18 small MIP instances to test the strength of triangles of
type 2 and quadrilateral cuts obtained by the procedures given in 2.3.3. Our instances are
taken from the MIPLIB 1 repository and we restrict our attention to problems with no more
than 100 integer variables and less than 300 constraints. Moreover we discarded all those
instances for which 1 round of GMI cuts does not improve the duality gap by more than
1%. We use the procedures described in Section 2.3 to separate Disjunctive Hull facets that
are also facets for the Integer Hull. First we solve the LP relaxation and we consider every
pair of rows associated to some variable subject to integrality constraints with a fractional
value in the LP solution. For each pair of rows we eliminate duplicate rays and we apply
the procedures GenerateNonDegenerateQuadrilateralFacet and GenerateDegenerateQuadri-
lateralFacet to generate facets of the Integer Hull. Every time a subset of 3 or 4 rays is
chosen, we eliminate the first ray in order to avoid to generate the same cut again. Cuts
are collected in a pool and cut validating procedures are applied before computing the du-
ality gap closed by the new cuts. The cut validating procedure discards duplicated cuts
and cuts which have a normalized violation less than 10−7 and a maximum cut dynamics of
1013 (i.e. max ratio between the largest and the smallest coefficient in the normalized cut).
Note that the procedures are not exhaustive, i.e. only a subset of facets of the Integer Hull
are generated. The purpose of this experiment is to assess the impact of the Integer Hull
facets we consider compared to the standard GMI cuts (separated using the cut generator
CglGomory part of CGL/CoinOR). Our implementation is written in C++ and is based on
the CoinOR framework. We use CLP version 1.11 and CGL version 0.55. Our results take
into consideration the duality gap as a measure of strength for the cuts we separate. Given
a Mixed Integer Program having optimal value vIP and a Linear Programming relaxation
optimal value vLP , we define the duality gap for a relaxation R having optimal solution vR

as

DualityGap% =
vR − vLP

vIP − vLP
· 100. (2.3.40)

In Table 2.1 we compare GMI cuts and Integer Hull facets. The duality gap closed by
a family of cut is indicated by a trailing % in the column name, while the number of cuts
separated per family is indicated by a trailing #.

The cuts generated via the procedure GenerateNonDegenerateQuadrilateralFacet are de-
noted by Qd and those generated via GenerateDegenerateQuadrilateralFacet are denoted by
T d. For some instances we are able to generate only few cuts, and in 2 cases (sample2 and
egout) our procedures do not generate any cut, this is due to the fact that our procedure
are not exhaustive and not all facets of the Integer Hull are generated by our procedures.
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Table 2.1: Preliminary experiments comparing GMI and Disjunctive Hull facets

instance GMI% GMI# T d% Qd% T d+Qd% T d+Qd# GMI+T d+Qd%
stein09∗ 28.57 9 0.00 28.57 28.57 38 28.57
flugpl 11.74 10 13.25 2.81 13.27 68 13.37
stein15∗ 16.64 15 18.06 17.62 18.06 2671 18.06
sample2 5.82 12 0.00 0.00 0.00 0 5.82
bm23 16.81 4 20.20 19.83 20.20 4008 20.20
stein27∗ 8.30 27 8.85 8.79 8.85 17763 8.85
p0033 12.60 5 0.01 4.05 4.05 9 12.60
pipex 31.49 6 28.63 31.49 32.08 607 32.08
mod013 4.40 5 15.06 8.42 16.04 60 16.04
egout 21.84 16 0.00 0.00 0.00 0 21.84
bell5 14.43 22 3.48 0.00 3.48 23 14.50
misc02 3.68 8 4.66 4.66 4.66 277 4.66
bell4 23.37 43 2.26 0.50 2.64 20 23.37
bell3a 58.07 11 23.15 33.35 34.69 85 58.20
bell3b 41.11 31 5.39 35.17 35.17 21 41.11
misc05 23.50 12 2.66 23.65 23.65 1586 23.65
misc01 1.68 12 1.68 1.68 1.68 20188 1.68
lseu 55.83 12 6.04 19.32 19.32 1627 55.83
Average 21.10 8.52 13.33 14.80 22.25
∗ original formulations from Fulkerson, Nemhauser and Trotter, 1974. They have non-zero GMI gap.
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The results show that the families of cuts separated have a very marginal impact. Our cuts
applied together with GMI cuts improve the standard GMI duality gap only for 10 instances
out of the 18 considered. On average the improvement over GMI cuts is only 1.15%.

2.3.7 Triangles of Type 1

Following the first round of experiments presented in 2.3.6 we abandoned the idea of sepa-
rating facets of the Integer Hull and we generated cuts derived from fixed configurations of
the parametric octahedron. As fixed shape we initially considered Triangles of Type 1, later
in the computational section, we amended these with conical cuts.

There had been several theoretical studies that considered Triangles of Type 1: Basu et
al. in [14] show that splits+Triangles of Type 1 might yield arbitrarily bad approximations
of PI , in [17] they consider different measures of strength and they show that Gomory cuts
are as useful as Triangle cuts.; He et al. in [40] show that in terms of “volume” cut off, the
split cuts are more likely to be better than cuts from Triangles of Type 1; Del Pia et al. in
[28] relate the strength of the cuts with the lattice width of the underlying convex set used
to produce them. Closer the set is to a split, less likely is the associated cut to improve over
the split closure.

In Table 2.2 we report computational results on the same set of instances as in Table 2.1
but this time we separated cuts that derive from fixed Triangles of Type 1.

Every pair of rows is used to generate up to 4 different cuts as there are 4 triangles of
type 1 that contain the unit cube:

• Triangle of Type 1 having vertices (0, 0); (0, 2); (2, 0);

• Triangle of Type 1 having vertices (1, 0); (1, 2); (−1, 0);

• Triangle of Type 1 having vertices (1, 1); (−1, 1); (1,−1);

• Triangle of Type 1 having vertices (0, 1); (2, 1); (0,−1).

The cuts separated from fixed shapes such as the 4 triangles above are in general not facets
for the Integer Hull of the 2-row relaxations. For this set of experiments, the results show
that these type of cuts perform much better than the facets of the Integer Hull considered in
Table 2.1. On average the cuts from Triangles of type 1 improve by 6.15% the duality gap
on the 18 instances.

This larger improvement of Triangles of Type 1 versus the Integer Hull facets suggested
the following question:how well do the 4 cuts from triangles of type 1 approximate the
disjunctive hull PD? We address this question in the subsection that follows. Furthermore
we carried out experiments on a larger scale with cuts from Triangles of Type 1 and we
discuss them in Section 2.5.

Splits+Triangles of Type 1 yield good empirical approximations of PD

The goal is to see how the Gomory cuts combined with the Triangles of Type 1 compare
with the entire collection of facets of the Disjunctive Hull. Note that both Gomory cuts and
Triangle of Type 1 cuts correspond to nonbasic solutions that are combinations of basic ones,
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Table 2.2: Preliminary experiments comparing GMI and cuts from Triangles of type 1

instance GMI% GMI# T4
1 % T4

1 # GMI+T4
1 % GMI+T4

1 #
stein09∗ 28.57 9 28.57 114 28.57 123
flugpl 11.74 10 13.11 180 13.11 190
stein15∗ 16.64 15 16.88 403 17.23 418
sample2 5.82 12 5.86 264 5.86 276
bm23 16.81 4 19.21 60 19.36 64
stein27∗ 8.30 27 8.33 1375 8.53 1402
p0033 12.60 5 57.04 98 57.04 103
pipex 31.49 6 31.87 148 31.87 154
mod013 4.40 5 18.78 140 18.78 145
egout 21.84 16 61.11 3162 61.11 3178
bell5 14.43 22 15.92 1214 16.14 1236
misc02 3.68 8 4.26 207 4.26 215
bell4 23.37 43 23.62 4133 23.62 4176
bell3a 58.07 11 64.11 1990 64.11 2001
bell3b 41.11 31 41.44 2747 41.44 2778
misc05 23.50 12 23.65 553 23.65 565
misc01 1.68 12 1.68 556 1.68 568
lseu 55.83 12 55.19 289 55.83 301
Average 21.10 27.26 27.35
∗ original formulations from Fulkerson, Nemhauser and Trotter, 1974. They have non-zero GMI gap.
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some of which might be facet defining for the Disjunctive Hull. We considered instances with
12 variables. Due to the size of the associated CGLPs, it is impractical to use the double
description method via CDD [35] to enumerate all the Disjunctive Hull facets. Instead we
resorted on a different technique to obtain them. The procedure GenerateDisjunctiveHull-
Facets shown below, generates basic solutions many of which correspond to Disjunctive Hull
facets.

GenerateDisjunctiveHullFacets

1 Inizialize cut collection C ← empty
2 repeat
3 Generate random CGLP objective function coefficients c̄j, j ∈ J
4 Optimize CGLP with min

∑
j c̄jαj and get optimal solution (ᾱ, v̄, w̄)

5 C ← C ∪ “ᾱs ≥ 1” (if not present already)
6 until no cuts are added to C in the past 100 iterations
7 return C

We applied the procedure GenerateDisjunctiveHullFacets to a collection of 100 randomly
generated MIP instances with 2 constraints, 2 basic integer variables and 10 non-basic con-
tinuous variables. For each instance we computed the gap given by adding Disjunctive Hull
cuts (DH) , Gomory cuts only (G) and Gomory + Triangles of Type 1 cuts (G+T1T). Av-
erage results are given in Table 2.3. Next to each class of cuts we indicated the number of
cuts used.

Table 2.3: Average gap closed by Disjunctive Hull cuts on 100 random instances

G (2) G + T1T (6) DH (10) DH (20) DH (50) DH (100) DH (150) DH (200)
49.17 65.02 29.68 53.52 57.23 59.51 62.94 65.69

Gomory and Triangles of Type 1 cuts seem to capture most of the strength of the Disjunc-
tive Hull approach with very little effort since at most 6 cuts (2 Gomory and 4 Triangles)
must be separated. On the other hand there exists a very large number of Disjunctive
Hull facets and is computationally challenging to generate them and add them to the linear
relaxation.

As an example on a real instance, we also run the procedure GenerateDisjunctiveHull-
Facets on every pair of rows of the instance mas76 from MIPLIB 3. We stopped the com-
putation after 2 hours during which we were able to generate 4836 unique Disjunctive Hull
facets. We computed the gap closed by adding them on top of the LP relaxation. The 5
dashed lines in Figure 2.10 illustrate how the gap closed increases with the number of Dis-
junctive Hull cuts added (each line corresponds to a random ordering of the 4836 cuts). We
observe that, in order to reach the gap closed by Gomory+Triangles of Type 1 cuts, a very
large number of Disjunctive Hull facets is needed (the vertical black dashed line indicated
the number of Gomory+Triangle of Type 1 cuts generated for the instance and the solid
black line corresponds to the gap closed by the same cuts).

69



In our experiments we did not use integrality of the non-basic variables, for Gomory,
Triangle of Type 1 and Disjunctive Hull cuts. (This explains the different gap values reported
in Figure 2.10 and the tables in the computational results section).

Figure 2.10: Gap closed by Disjunctive Hull facets on the instance mas76
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2.4 The 0-1 Disjunctive Hull

The work by Dash et al. [29] has a similar flavor to the one we presented so far. They
introduce cross and crooked cross disjunctions and cuts derived from those. They give
theoretical results that relate the closures of their cuts with the split closure and they show
that any 2 dimensional lattice free cut can be obtained as a crooked cross cut. Cross cuts are
a generalization of the MIP Disjunctive Hull cuts, which are the subject of our investigation.
When restricted to the 0-1 case though, the family of cuts obtainable via the Disjunctive
Hull approach are new and they were not yet considered in the literature.

We now consider the 0-1 Disjunctive Hull P=
D for q = 2, i.e. we work with P01 = {(x, s) ∈

{0, 1}2 × R|J | : (x, s) ∈ PL} where PL is given in (2.3.1). The CGLP that produce the
facets for P=

D is the Linear Program (2.2.5). In addition to the cuts obtainable for the MIP
CGLP given in Section 2.3.1, when v, w are unrestricted in sign some additional parametric
octahedra configurations are possible:

• Unbounded parametric octahedra.

• Triangles with 3 tilted faces.
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Note that for the 0-1 case, triangles with 3 tilted faces can contain in the interior integer
lattice points not belonging to the vertices of K. Moreover, since we can have unbounded
parametric octahedra, there exist facets of the Disjunctive Hull with negative coefficients.
As we did in 2.3.1, we give a geometrical classification of the types of CGLP basis that
correspond to Disjunctive Hull facets for the 0-1 case. Let k1 ∈ {1, . . . , 4} be the index of
any vertex of K. We denote by k2, k3, k4 the indices of the vertices of K that follow k1 in
counter-clockwise order. The following configurations are symmetrical and exhaustive when
considering every value for k1 ∈ {1, . . . , 4} and swapping the roles of x1 and x2 (i.e. swapping
v with w).

• (TC) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; vk3 > 0, wk3 > 0 and vk4 > 0, wk4 > 0, the
parametric octahedron is a triangle of type 3 with all vertices outside the cube K. The
face corresponding to k4 is inactive. See Figure 2.11(a).

• (TD) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; vk3 < 0, wk3 > 0 and vk4 > 0, wk4 > 0, the
parametric octahedron is a triangle of type 3 with one vertex inside the cube K. The
face corresponding to k4 is inactive. See Figure 2.11(b).

• (CA) vk1 , wk1 > 0; vk2 , vk3 > 0;wk2 = wk3 = 0 and vk4 > 0, wk4 < 0, the parametric
octahedron is a cone with a vertical face (horizontal, when v and w are swapped). See
Figure 2.11(c).

• (CB) vk1 < 0, wk1 > 0; vk2 , wk2 > 0; vk3 > 0, wk3 < 0 and vk4 > 0, wk4 > 0, the
parametric octahedron is a cone with the two faces in general position. See Figure
2.11(d).

• (CT ) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; vk3 < 0, wk3 > 0 and vk4 < 0, wk4 > 0, the
parametric octahedron is a truncated cone (in this case the parametric octahedron
face through the vertex k4 induces the truncation). See Figure 2.11(e).

• (ST ) vk1 < 0, wk1 > 0; vk3 > 0, wk3 < 0, the parametric octahedron is a truncated split.
One or two of the faces might truncate the split. See Figure 2.11(f).

• (QG) vk1 , wk1 > 0; vk2 , wk2 > 0;vk3 < 0, wk3 > 0 and vk4 < 0, wk4 > 0, the parametric
octahedron is a general quadrilateral, not maximal (0-1)-free. See Figure 2.11(g).

Example Consider the Andersen et al. instance amended with the condition xi ∈ {0, 1}, i ∈
{1, 2}:

x1 = 1
4

+2s1 +1s2 −3s3 +1s5
x2 = 1

2
+1s1 +1s2 +2s3 −1s4 −2s5

s ≥ 0
x1, x2 ∈ {0, 1}.

(2.4.1)

The CGLP for (2.4.1) contains 38 variables (α, β, v, w and the slacks for the 4 × 5 = 20 α-
constraints and 4 β-constraints) and 25 constraints (4×5 = 20 α-constraints, 4 β-constraints
and the normalization constraint β = 1). We can eliminate the variable β and its normaliza-
tion constraint getting a CGLP with 37 variables and 24 constraints. Of the 37 variables, 13
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Figure 2.11: Additional configurations of the parametric octahedron for the 0-1 case
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are unrestricted in sign and must be in the base. That leaves 11 variables that can be part
of the base and must be chosen from 37-13=24 variables. Using grey code enumeration, we
enumerated all the possible

(
24
11

)
= 2, 496, 144 bases of the 0-1 CGLP associated to (2.4.1).

We discarded the infeasible bases and removed all the bases that yield duplicate cuts. The
following 35 cuts are all the facets of the 0-1 Disjunctive Hull:

1. Cut (type S): 2.667s1 + 1.333s2 + 12s3 + 0s4 + 1.333s5 ≥ 1
v1 = 4; v2 = 1.333; v3 = 1.333; v4 = 4
w1 = 0; w2 = 0; w3 = 0; w4 = 0

2. Cut (type TB): 2.667s1 + 1.333s2 + 4.889s3 + 0.8889s4 + 1.333s5 ≥ 1
v1 = 2.222; v2 = 1.333; v3 = 1.333; v4 = 0.4444
w1 = 0.8889; w2 = 0; w3 = 0; w4 = 1.778

3. Cut (type TB): 2s1 + 2s2 + 4s3 + 1s4 + 1.714s5 ≥ 1
v1 = 2; v2 = 1.143; v3 = 0; v4 = 0
w1 = 1; w2 = 0.2857; w3 = 2; w4 = 2

4. Cut (type TB): 2s1 + 2s2 + 9.714s3 + 0.2857s4 + 1.714s5 ≥ 1
v1 = 3.429; v2 = 1.143; v3 = 0; v4 = 0
w1 = 0.2857; w2 = 0.2857; w3 = 2; w4 = 2

5. Cut (type TC): 3s1 + 1s2 + 5.333s3 + 2s4 + 4s5 ≥ 1
v1 = 0; v2 = 0; v3 = 2; v4 = 0.6667
w1 = 2; w2 = 2; w3 = −1; w4 = 1.667

6. Cut (type TC): 2.947s1 + 1.053s2 + 5.263s3 + 0.8421s4 + 3.579s5 ≥ 1
v1 = 2.316; v2 = 0.7719; v3 = 1.895; v4 = 0.6316
w1 = 0.8421; w2 = 0.8421; w3 = −0.8421; w4 = 1.684

7. Cut (type TC): 2.667s1 + 2.4s2 + 3.467s3 + 1.067s4 + 1.333s5 ≥ 1
v1 = 1.867; v2 = 1.333; v3 = 1.333; v4 = −0.2667
w1 = 1.067; w2 = 0; w3 = 0; w4 = 2.133

8. Cut (type TC): 1.63s1 + 2.37s2 + 8.444s3 + 0.4444s4 + 1.926s5 ≥ 1
v1 = 3.111; v2 = 1.037; v3 = −0.7407; v4 = 2.222
w1 = 0.4444; w2 = 0.4444; w3 = 3.111; w4 = 0.8889

9. Cut (type TC): 3.6s1 + 2s2 + 4s3 + 1s4 + 0.8s5 ≥ 1
v1 = 2; v2 = 1.6; v3 = 0; v4 = 0
w1 = 1; w2 = −0.4; w3 = 2; w4 = 2

10. Cut (type TD): 1.111s1 + 2.889s2 + 14.67s3 + 0.6667s4 + 2.222s5 ≥ 1
v1 = 2.667; v2 = 0.8889; v3 = −1.778; v4 = 5.333
w1 = 0.6667; w2 = 0.6667; w3 = 4.667; w4 = −0.6667

11. Cut (type TD): 0.4s1 + 3.6s2 + 23.2s3 + 2.8s4 + 7.2s5 ≥ 1
v1 = −1.6; v2 = 1.6; v3 = −3.2; v4 = 9.6
w1 = 2.8; w2 = 2.8; w3 = 6.8; w4 = −2.8
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12. Cut (type TD): 3.034s1 + 2.621s2 + 3.172s3 + 1.103s4 + 4.276s5 ≥ 1
v1 = 1.793; v2 = 0.5977; v3 = 2.069; v4 = −0.4138
w1 = 1.103; w2 = 1.103; w3 = −1.103; w4 = 2.207

13. Cut (type TD): 4.364s1 + 2.545s2 + 3.273s3 + 1.091s4 + 0.3636s5 ≥ 1
v1 = 1.818; v2 = 1.818; v3 = 1.818; v4 = −0.3636
w1 = 1.091; w2 = −0.7273; w3 = 0.7273; w4 = 2.182

14. Cut (type TD): 3.765s1 + 3.059s2 + 2.588s3 + 1.176s4 + 0.7059s5 ≥ 1
v1 = 1.647; v2 = 1.647; v3 = 0.7059; v4 = −0.7059
w1 = 1.176; w2 = −0.4706; w3 = 2.353; w4 = 2.353

15. Cut (type CA): 12s1 + 8s2 − 4s3 + 2s4 + 4s5 ≥ 1
v1 = 0; v2 = 0; v3 = 4; v4 = −4
w1 = 2; w2 = 2; w3 = 4; w4 = 4

16. Cut (type CA): 12s1 + 8s2 + 12s3 + 0s4 − 4s5 ≥ 1
v1 = 4; v2 = 4; v3 = 4; v4 = 4
w1 = 0; w2 = −4; w3 = 4; w4 = 0

17. Cut (type CB): 32s1 + 20s2 − 20s3 + 4s4 + 12s5 ≥ 1
v1 = −4; v2 = 4; v3 = 4; v4 = −12
w1 = 4; w2 = 4; w3 = −4; w4 = 8

18. Cut (type CB): 12s1 + 8s2 + 44s3 − 4s4 − 4s5 ≥ 1
v1 = 12; v2 = 4; v3 = 4; v4 = −4
w1 = −4; w2 = −4; w3 = 4; w4 = 4

19. Cut (type CB): 12s1 + 8s2 + 28s3 − 2s4 − 4s5 ≥ 1
v1 = 8; v2 = 4; v3 = 0; v4 = −4
w1 = −2; w2 = −4; w3 = 2; w4 = 4

20. Cut (type CT ): 0.6667s1 + 3.333s2 + 20s3 + 2s4 + 4s5 ≥ 1
v1 = 0; v2 = 0; v3 = −2.667; v4 = 8
w1 = 2; w2 = 2; w3 = 6; w4 = −2

21. Cut (type CT ): 3s1 + 2.6s2 + 3.2s3 + 2s4 + 4s5 ≥ 1
v1 = 0; v2 = 0; v3 = 2; v4 = −0.4
w1 = 2; w2 = 2; w3 = −1; w4 = 2.2

22. Cut (type CT ): −2s1 + 6s2 + 52s3 + 2s4 + 4s5 ≥ 1
v1 = 0; v2 = 0; v3 = −8; v4 = 8
w1 = 2; w2 = 2; w3 = 14; w4 = −2

23. Cut (type CT ): 4s1 + 2.286s2 + 3.619s3 + 4s4 + 12s5 ≥ 1
v1 = −4; v2 = 1.714; v3 = 4; v4 = −0.1905
w1 = 4; w2 = −0.5714; w3 = −4; w4 = 2.095
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24. Cut (type CT ): 3.515s1 + 2.909s2 + 14.91s3 − 0.3636s4 + 0.8485s5 ≥ 1
v1 = 4.727; v2 = 1.576; v3 = −1.818; v4 = −0.6061
w1 = −0.3636; w2 = −0.3636; w3 = 4.727; w4 = 2.303

25. Cut (type CT ): 4.533s1 + 2.667s2 + 12s3 + 0s4 + 0.2667s5 ≥ 1
v1 = 4; v2 = 1.867; v3 = −1.333; v4 = 4
w1 = 0; w2 = −0.8; w3 = 4; w4 = 0

26. Cut (type CT ): 5.778s1 + 3.556s2 + 22.67s3 − 1.333s4 − 0.4444s5 ≥ 1
v1 = 6.667; v2 = 2.222; v3 = −3.111; v4 = 1.333
w1 = −1.333; w2 = −1.333; w3 = 6.667; w4 = 1.333

27. Cut (type CT ): 8s1 − 4s2 + 12s3 + 16s4 + 44s5 ≥ 1
v1 = 4; v2 = −9.333; v3 = 12; v4 = 4
w1 = 0; w2 = 16; w3 = −16; w4 = 0

28. Cut (type ST ): 4s1 + 0s2 + 6.667s3 + 4s4 + 12s5 ≥ 1
v1 = −4; v2 = −1.333; v3 = 4; v4 = 1.333
w1 = 4; w2 = 4; w3 = −4; w4 = 1.333

29. Cut (type ST ): 4s1 + 3.2s2 + 2.4s3 + 4s4 + 12s5 ≥ 1
v1 = −4; v2 = −1.333; v3 = 4; v4 = −0.8
w1 = 4; w2 = 4; w3 = −4; w4 = 2.4

30. Cut (type ST ): 5s1 + 3s2 + 16s3 + 1s4 + 0s5 ≥ 1
v1 = 2; v2 = 2; v3 = −2; v4 = 6
w1 = 1; w2 = −1; w3 = 5; w4 = −1

31. Cut (type ST ): 0s1 + 4s2 + 28s3 + 4s4 + 6.667s5 ≥ 1
v1 = −1.333; v2 = −1.333; v3 = −4; v4 = 12
w1 = 2.667; w2 = 4; w3 = 8; w4 = −4

32. Cut (type QG): 0.8s1 + 3.2s2 + 18.4s3 + 1.6s4 + 2.4s5 ≥ 1
v1 = 0.8; v2 = 0.8; v3 = −2.4; v4 = 7.2
w1 = 1.6; w2 = 0.8; w3 = 5.6; w4 = −1.6

33. Cut (type QG): 2.811s1 + 1.189s2 + 5.081s3 + 0.8649s4 + 2.486s5 ≥ 1
v1 = 2.27; v2 = 0.7568; v3 = 1.622; v4 = 0.5405
w1 = 0.8649; w2 = 0.8649; w3 = −0.4324; w4 = 1.73

34. Cut (type QG): 2.847s1 + 2.508s2 + 3.322s3 + 1.085s4 + 2.78s5 ≥ 1
v1 = 1.831; v2 = 0.6102; v3 = 1.695; v4 = −0.339
w1 = 1.085; w2 = 1.085; w3 = −0.5424; w4 = 2.169

35. Cut (type QG): 2.975s1 + 1.554s2 + 4.595s3 + 0.9256s4 + 3.802s5 ≥ 1
v1 = 2.149; v2 = 1.421; v3 = 1.95; v4 = 0.2975
w1 = 0.9256; w2 = −0.1322; w3 = −0.9256; w4 = 1.851
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For each cut, we give its representation in the space of x1, x2 variables in Figure 2.12. For all
the cases except for cones and splits, the set Lα is also shown. The number of cuts generated
by the 0-1 CGLP (35) largerly exceeds the number of cuts generated by the MIP CGLP
(5). As a side experiment, we solved 1000 linear programs with the two rows in 2.4.1, and
random objective function coefficients chosen from the interval [0; 100]. Adding the 35 0-1
Disjunctive Hull facets we close 100% of the gap, (this should not surprise since PI = P=

D

for (2.4.1) ). Instead, if we use the 5 MIP Disjunctive Hull facets shown in section 2.3.2, the
average gap closed is 77%.

2.4.1 Basic solutions and cut dominance

Observation 2.4.1. There exist optimal basic solutions to the CGLP (both for the MIP and
0-1 case) which correspond to dominated cuts.

Example Consider the following MIP 2-row instance:

x1 = 1
4

+2s1 −3s2 +4s4
x2 = 1

2
+1s1 +2s2 −1s3 +1s4

s ≥ 0
x1, x2 ∈ Z.

These are two basic feasible solutions to the MIP CGLP

(a) v1 = 4 v2 =
8
11

v3 = 0 v4 = 4
w1 = 0 w2 =

10
11

w3 = 2 w4 = 0
producing the cut: 2s1 + 12s2 +

10
11
s3 + 2s4 ≥ 1

(b) v1 =
24
11

v2 =
8
11

v3 = 0 v4 =
8
55

w1 =
10
11

w2 =
10
11

w3 = 2 w4 =
118
55

producing the cut: 2s1 +
52
11
s2 +

10
11
s3 + 2s4 ≥ 1

Both cuts correspond to basic feasible solutions, but the cut (b) strictly dominates the cut
(a). The two cuts are illustrated graphically in Figure 2.13.

On this matter, the following open question arises: “Is it possible to characterize the
basic feasible solutions to the CGLP that yield non-dominated cuts?”. As of now, we do not
have an answer to this question and it will be subject of our future investigations.

Observation 2.4.2. There exist optimal basic solutions to the CGLP whose associated para-
metric octahedra do not define maximal 0-1 free cuts.

This is the case, for example, for the cuts 32-35 of the Andersen et al. 0-1 instance.

2.4.2 Strengthening

Modularization based strengthening applies to cuts derived from the 0-1 Disjunctive Hull
only when the parametric octahedron is a lattice free convex set. Moreover, even when this
is so, Theorem 2.3.10 does not hold as the following Observation and example highlight.
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Figure 2.12: 0-1 Disjunctive Hull facets of the Andersen et al. example
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Figure 2.12: 0-1 Disjunctive Hull facets of the Andersen et al. example - continuation
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Figure 2.12: 0-1 Disjunctive Hull facets of the Andersen et al. example - continuation
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Figure 2.13: Dominated and Non-dominated cuts from basic feasible CGLP solutions

Observation 2.4.3. If we allow unconstrained v̄, w̄ then the optimal solution to (2.3.28)
might not correspond to (m1,m2) restricted to (2.3.30).

What is stated in the Observation 2.4.3 can be seen in the following instance: (f1, f2) =
(0.3; 0.1), v̄ = (3.2; 1.2; 6.0; 0.5), w̄ = (0.4; 1.6;−3.55; 0.94) and the ray r = (3.3; 2.1). The
coefficient corresponding to r, computed using (2.3.29) subject to the restriction (2.3.30)
is 1.44 and the optimal solution has m∗

1 = b3.2c = 3;m∗
2 = b2.1c = 2. If we allow any

value m1,m2 ∈ Z then the optimal coefficient is 0.884 and that corresponds to the values
m∗

1 = 3;m∗
2 = 1.

A different strengthening technique applies to the 0-1 case, the Monoidal Strengthening
introduced by Balas and Jeroslow in [11]. We illustrate this technique on 8 conic cuts that
are used in the computational experiments given later. Consider the following 8 disjunctions
that are valid for P01:

1. (−x2 ≥ 0) ∨ (−x1 + x2 ≥ 0)

2. (−x1 ≥ 0) ∨ (+x1 − x2 ≥ 0)

3. (+x2 ≥ 1) ∨ (−x1 − x2 ≥ −1)

4. (−x1 ≥ 0) ∨ (+x1 + x2 ≥ 1)

5. (+x2 ≥ 1) ∨ (+x1 − x2 ≥ 0)

6. (+x1 ≥ 1) ∨ (−x1 + x2 ≥ 0)

7. (−x2 ≥ 0) ∨ (+x1 + x2 ≥ 1)

8. (+x1 ≥ 1) ∨ (−x1 − x2 ≥ −1)

Substituting xi = fi +
∑

j∈J r
i
jsj for i ∈ {1, 2} we get

1.
(∑

j∈J(−r2j )sj ≥ f2

)
∨
(∑

j∈J(−r1j + r2j )sj ≥ f1 − f2

)
2.
(∑

j∈J(−r1j )sj ≥ f1

)
∨
(∑

j∈J(r
1
j − r2j )sj ≥ f2 − f1

)
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3.
(∑

j∈J(+r2j )sj ≥ 1− f2

)
∨
(∑

j∈J(−r1j − r2j )sj ≥ f1 + f2 − 1
)

4.
(∑

j∈J(−r1j )sj ≥ f1

)
∨
(∑

j∈J(r
1
j + r2j )sj ≥ 1− f1 − f2

)
5.
(∑

j∈J(+r2j )sj ≥ 1− f2

)
∨
(∑

j∈J(r
1
j − r2j )sj ≥ f2 − f1

)
6.
(∑

j∈J(+r1j )sj ≥ 1− f1

)
∨
(∑

j∈J(−r1j − r2j )sj ≥ f1 + f2 − 1
)

7.
(∑

j∈J(−r2j )sj ≥ f2

)
∨
(∑

j∈J(r
1
j + r2j )sj ≥ 1− f1 − f2

)
8.
(∑

j∈J(+r1j )sj ≥ 1− f1

)
∨
(∑

j∈J(−r1j + r2j )sj ≥ f1 − f2

)
Using Disjunctive Programming we can obtain from each disjunction a disjunctive cut of the
form αs ≥ 1 whose coefficients αj, j ∈ J as given by the expressions

1. max{−r2j
f2

,
−r1j+r2j
f1−f2

}

2. max{−r1j
f1

,
r1j−r2j
f2−f1

}

3. max{ r2j
1−f2

,
−r1j−r2j
f1+f2−1

}.

4. max{−r1j
f1

,
r1j+r2j

1−f1−f2
}

5. max{ r2j
1−f2

,
r1j−r2j
f2−f1

}

6. max{ r1j
1−f1

,
−r1j+r2j
f1−f2

}

7. max{−r2j
f2

,
r1j+r2j

1−f1−f2
}

8. max{ r1j
1−f1

,
−r1j−r2j
f1+f2−1

}

Note that for any solution with x1, x2 fractional at most 4 of the 8 disjunctions are violated,
therefore at most 4 cuts can be obtained. Now we assume that the non-basic variables
sj, j ∈ J1 ⊆ J are subject to integrality constraints. We can then use monoidal strengthening
to strengthen the coefficients of the disjunctive cut αs ≥ 1.

Proposition 2.4.4. Consider the monoid M = {m ∈ Z2 : m1 + m2 ≥ 0}. The following
disjunctions are satisfied whenever the original disjunctions are

1.
(∑

j∈J(−r2j +m1
j)sj ≥ f2

)
∨
(∑

j∈J(−r1j + r2j +m2
j)sj ≥ f1 − f2

)
2.
(∑

j∈J(−r1j +m1
j)sj ≥ f1

)
∨
(∑

j∈J(r
1
j − r2j +m2

j)sj ≥ f2 − f1

)
3.
(∑

j∈J(+r2j +m1
j)sj ≥ 1− f2

)
∨
(∑

j∈J(−r1j − r2j +m2
j)sj ≥ f1 + f2 − 1

)
81



4.
(∑

j∈J(−r1j +m1
j)sj ≥ f1

)
∨
(∑

j∈J(r
1
j + r2j +m2

j)sj ≥ 1− f1 − f2

)
5.
(∑

j∈J(+r2j +m1
j)sj ≥ 1− f2

)
∨
(∑

j∈J(r
1
j − r2j +m2

j)sj ≥ f2 − f1

)
6.
(∑

j∈J(+r1j +m1
j)sj ≥ 1− f1

)
∨
(∑

j∈J(−r1j + r2j +m2
j)sj ≥ f1 − f2

)
7.
(∑

j∈J(−r2j +m1
j)sj ≥ f2

)
∨
(∑

j∈J(r
1
j + r2j +m2

j)sj ≥ 1− f1 − f2

)
8.
(∑

j∈J(+r1j +m1
j)sj ≥ 1− f1

)
∨
(∑

j∈J(−r1j − r2j +m2
j)sj ≥ f1 + f2 − 1

)
Proof. Skipped, follows from [11].

We can strengthen the coefficient αj, j ∈ J1 as follows

1. minmj∈M max{−r2j+m1
j

f2
,
−r1j+r2j+m2

j

f1−f2
}

2. minmj∈M max{−r1j+m1
j

f1
,
r1j−r2j+m2

j

f2−f1
}

3. minmj∈M max{ r
2
j+m1

j

1−f2
,
−r1j−r2j+m2

j

f1+f2−1
}.

4. minmj∈M max{−r1j+m1
j

f1
,
r1j+r2j+m2

j

1−f1−f2
}

5. minmj∈M max{ r
2
j+m1

j

1−f2
,
r1j−r2j+m2

j

f2−f1
}

6. minmj∈M max{−r2j+m1
j

f2
,
r1j+r2j+m2

j

1−f1−f2
}

7. minmj∈M max{ r
1
j+m1

j

1−f1
,
−r1j+r2j+m2

j

f1−f2
}

8. minmj∈M max{ r
1
j+m1

j

1−f1
,
−r1j−r2j+m2

j

f1+f2−1
}

2.5 Computational Experiments

In this section we present computational experiments with cuts derived from from fixed
configurations of the parametric octahedron. We assess the strength of the cuts by analyzing
the gap closed on instances from the MIPLIB3 C V2 [43] when used in combination with
standard Gomory cuts. MIPLIB3 C V2 is a collection of 68 instances by Margot which
are slight variations of the standard MIPLIB3 [46] and for which the validity of a provided
feasible solution can be checked in finite precision arithmetic. We restricted the collection
of instances to a subset of 41 instances. The considered instances are such that they contain
at least 2 binary variables currently fractional in the basis of the root relaxation and the cut
generation procedure on each round takes less than 3600 seconds.

We separated the following two families of cuts
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• Cuts from 4 Triangles of type 1 whose vertices are expressed in terms of x1, x2 coordi-
nates (shown in Figure 2.14):

� (0, 0); (2, 0); (0, 2)

� (−1, 0); (1, 0); (1, 2)
� (0,−1); (2, 1); (0, 1)
� (−1, 1); (1, 1); (1,−1)

• Cuts from 8 cones (shown in Figure 2.15):

� apex at (0, 0) and rays (1, 0), (1, 1)

� apex at (0, 0) and rays (0, 1), (1, 1)

� apex at (0, 1) and rays (−1, 0), (−1, 1)
� apex at (0, 1) and rays (0, 1), (−1, 1)
� apex at (1, 1) and rays (−1, 0), (−1,−1)
� apex at (1, 1) and rays (0,−1), (−1,−1)
� apex at (0, 1) and rays (1, 0), (1,−1)
� apex at (0, 1) and rays (−1, 0), (1,−1)
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Figure 2.14: Fixed shape Triangles of type 1

We tested our cuts from Triangles of Type 1 and fixed-shape cones using the proce-
dure described in procedure SeparateFixedParametricOctahedra. We considered 5 rounds
of cuts, in each round we separated Gomory cuts and depending on the parameter flags
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Figure 2.15: Fixed shape cones

SeparateTriangles, SeparateCones we separate respectively cuts from the Triangles of
Type 1 and cuts from the fixed-shape cones described above. Strengthening of cuts from
Triangles of Type 1 is performed via modularization of the rays rj, j ∈ J1 as shown in Theo-
rem 2.3.10 whereas for the cuts from cones we use monoidal cut strengthening as illustrated
in 2.4.2. If the flag StrengthenCuts is set to true, the cuts are strengthened using integrality
of the non-basic variables. In each round, after reoptimizing the relaxation with the new
cuts, we remove the inequalities that are not tight for the current solution and are not part
of initial the root relaxation.

The Gomory cut generator we used is GomoryTwo which is developed by Margot and
available at [16]. We used the following configuration (the descriptions of the parameters is
taken from [42]):

• LUB = 104: If the absolute value of the upper bound on a variable is larger than that,
it is considered large.

• EPS COEFF = 10−5: Any cut coefficient smaller than that for a variable that does not
have a large upper bound is replaced by zero.

• EPS COEFF LUB= 10−13: Similar to EPS COEFF for variables having a large upper bound.

• MAXDYN = 108: A cut is discarded if none of the variables with nonzero coefficient have
a large upper bound and its dynamism is larger that this value.

• MAXDYN LUB = 1013: Similar to MAXDYN, but for cuts where some of the variables with
nonzero coefficients have a large upper bound.

• AWAY = 0.05: Lower bound on the absolute value of min{f ; 1− f}.

• MINVIOL = 10−4: If the violation of the cut by the current optimal solution of the LP
relaxation is lower than this number, the cut is discarded.
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The cut generators we implemented to separate Triangles of Type 1 and the fixed Cones
are used in conjunction with a cut validator that was configured to use the same values
of the parameters above. We ran 6 different experiments, one for each combination of the
2 cut generators with or without strengthening enabled. Detailed results by instance are
given for each experiment for the first round of cuts in Tables 2.4, 2.5 and 2.6 for the
strengthened version of the cuts. In Tables 2.7, 2.8 and 2.9 we give the detailed results for
the unstrengthened versions of the cuts. We denote by “G” the Mixed Integer Gomory cuts,
by “T” the cuts from Triangles of Type 1 and by “C” the cuts derived from the fixed cones.
In each table the columns “X%” show the gap closed by the combination of cut generators
given in “X ”, the columns “X add#” and “X del#” denote the number of cuts added and
removed after the reoptimization phase. The column “impr.%” indicates the percentage
improvement produced by adding the combination of cuts “X ” on top of the Mixed Integer
Gomory cuts. The number of Triangular and Conic cuts is much larger than that of Gomory
cuts. Let n be the number of basic variables subject to integrality constraints. In this setting
up to n Gomory cuts are generated (one for each variable with a current fractional value).
For the other two families of cuts we consider up to n(n−1)/2 pairs of variables and for each
pair we separate up to 4 Triangular cuts and 4 Conic cuts. The times to generate Gomory
cuts is, for the same reason, much lower than the time to generate the other two families of
cuts. Aggregate results for 5 rounds of cuts are given in Table 2.10.

The results show that the added families of cuts have a significant impact on the root
relaxations when used in combination of Gomory cuts. On average, using the two families of
strengthened cuts yields an improvement of 71.31% over the standard Gomory cuts. More-
over, as seen in Table 2.10, the same behaviour applies for additional rounds of cuts, i.e.
the improvement does not appear to decrease with iterative rounds. It actually increments
substantially to 84.23% in the third round of cuts.

We also ran the same experiments using a different Gomory cut generator, CglGomory
part of the CGL package of Coin-OR [24]. This cut generator is less aggressive on average
than GomoryTwo. Table 2.11 summarizes the average gap closed and average improvement
of the Triangle and Conic strengthened cuts added on top of the Gomory cuts. The improve-
ment of the new cuts over the Gomory cuts computed via CoinCglGomory is slightly higher
than with the cuts computed using the GomoryTwo implementation (aggregate results by
round given in Table 2.10). For brevity we omit the comparisons for the other different
combinations of cuts and strengthening. The outcome for those shows a similar behavior.

As an alternative way to assess how the cuts we consider perform in comparison to
Gomory cuts [44], we can determine the minimum number of rounds of Gomory cuts needed
to close at least the same amount of gap closed by the Gomory, Triangles of Type 1 and the
Conic cuts. Using CglGomoryTwo we need an average of 2.2 rounds of Gomory cuts to get
at least the same gap as the families of cuts we consider. We limited our computation to 30
rounds of Gomory cuts. For 6 instances out of 41 the Gomory gap never reached the gap
closed by Triangles and Cones. For the computation of the average, we discarded those 6
instances.
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SeparateFixedParametricOctahedra(r, f)

1 Solve LP relaxation P
2 for k ← 1 up to 5
3 do
4 Inizialize cut collection C ← empty
5 for each xi in basis, subject to integrality constraint and fractional in the

current basic solution
6 do
7 Compute Gomory cut Gi

8 C ← C ∪Gi

9 for each pair xi, xj in basis, subject to integrality constraints and with at
least one fractional in the current basic solution

10 do
11 if SeparateTriangles==true
12 then separate the cuts T 1

ij, . . . , T
4
ij from each of the 4 triangles of

type 1 that contain the fractional solution in their interior
13 if StrengthenCuts==true
14 then strengthen the cuts T 1

ij, . . . , T
4
ij via modularization

15 C ← C ∪ T 1
ij, . . . , T

4
ij

16 if SeparateCones==true
17 then separate the cuts K1

ij, . . . , K
8
ij from each of the 8 cones that

contain the fractional solution in their interior
18 if StrengthenCuts==true
19 then strengthen the cuts K1

ij, . . . , K
8
ij via monoidal cut

strengthening
20 C ← C ∪K1, . . . , K

8
ij

21 Resolve P and get new solution x̄k with value opt
k

22 Remove from P the cuts in C that are not tight at x̄k

For the computations we used a single core of a Linux 2.6.32-32 computer with an Intel
Core 2 Duo 2.66GHz with 4GB of memory. We used Cbc version 2.4.0 and Clp version 1.11
from the optimization suite Coin-OR [24].

2.5.1 Cut validity and statistical testing

Recently in [42] Margot proposed a method for testing new cut generators that goes beyond
the comparison in terms of strength and gap closed of the new families of cuts versus some
standard references, e.g. Mixed Integer Gomory or Reduce-and-split cuts. Margot developed
a code (available in [16]) that can be used to assess the validity of the new cut generators
keeping track of failures that might occur such as generation of invalid cuts. It also performs
statistical testing to compare the strength of the cut generators using the nonparametric
Quade test within the statistical software R version 2.10.1 (2009-12-14). The code can be
used with any cut generator that conforms to the CGL package of Coin-OR [24]. The statis-
tical testing code on all 6 combinations of cuts/strengthening shows that the improvement
given by the cuts considered after one round at depth 0 of the branch-and-bound tree is
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statistically significant with a 99% confidence level. As for the validity of the cuts, we tested
the combination of cuts from Triangles of Type 1 and fixed Cones with strengthening enabled
on the 41 instances considered. On the instances dcmulti,qiu the GomoryTwo cut generator
had a failure of type 2, i.e. during the random diving towards a feasible solution the LP
becomes infeasible. When the additional two cut generators were considered, in addition to
the previous two instances, a failure of type 2 also occurred for the instance pp08a.
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Table 2.4: MIGs + Type 1 Triangles + Conic cuts, Strengthening, 1 round

Instance G% G add# G del# GTC% GTC add# GTC del# impr.%
air03 100 5 1 100 12272 12196 0.00
cap6000 41.65 2 1 41.65 1357 1355 0.00
danoint 0.26 24 14 0.26 24 14 0.00
dcmulti 45.40 48 13 46.17 708 669 1.70
egout 21.45 15 0 61.13 3505 3472 184.99
enigma 100 1 0 100 336 335 0.00
fiber 51.08 20 8 61.41 23163 23100 20.22
fixnet3 6.62 6 0 56.19 2925 2827 748.79
fixnet4 4.79 6 0 13.02 2830 2732 171.82
fixnet6 3.98 6 0 13.03 2502 2388 227.39
khb05250 73.59 18 0 84.21 1434 1404 14.43
l152lav 10.87 12 2 24.87 15693 15610 128.79
lseu 55.19 12 7 55.19 569 563 0.00
markshare1 0 6 3 0 124 110 0.00
markshare2 0 7 3 0 173 147 0.00
mas74 6.52 9 0 7.50 511 490 15.03
mas76 6.36 9 0 7.66 433 411 20.44
misc03 8.62 14 12 8.62 2488 2483 0.00
misc06 26.09 9 0 26.09 73 5 0.00
misc07 0 21 19 0 4198 4193 0.00
mod008 20.10 4 0 20.27 96 90 0.85
mod010 100 5 1 100 14783 14641 0.00
mod011 27.87 15 3 32.75 867 178 17.51
modglob 13.32 16 2 16.26 137 41 22.07
p0033 12.60 5 1 57.04 174 168 352.70
p0201 16.89 18 11 19.31 1931 1927 14.33
p0282 3.47 24 17 6.20 2837 2829 78.67
p0548 3.06 19 2 18.53 5584 5520 505.56
p2756 0.21 7 1 0.56 908 885 166.67
pk1 0 15 3 0 34 20 0.00
pp08a 54.30 50 0 65.30 7822 7730 20.26
pp08aCUTS 33.13 43 0 41.25 2591 2527 24.51
qiu 0.33 36 25 0.33 36 25 0.00
rentacar 0 2 0 0 7 5 0.00
rgn 3.15 17 10 3.15 1341 1331 0.00
set1ch 30.36 125 1 44.47 27465 27206 46.48
stein27 0 21 18 0 1257 1254 0.00
stein45 0 35 30 0 3584 3576 0.00
swath 5.50 13 0 9.10 7538 7515 65.45
vpm1 20.73 12 0 23.94 1073 1047 15.48
vpm2 10.14 27 3 16.35 4431 4380 61.24
Average 22.38 18.51 5.15 28.82 3897.90 3839 71.35
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Table 2.5: MIGs + Type 1 Triangles, Strengthening, 1 round

Instance G% G add# G del# GT% GT add# GT del# impr.%
air03 100 5 1 100 5437 5361 0.00
cap6000 41.65 2 1 41.65 361 359 0.00
danoint 0.26 24 14 0.26 24 14 0.00
dcmulti 45.40 48 13 45.88 225 190 1.06
egout 21.45 15 0 60.76 2038 2007 183.26
enigma 100 1 0 100 138 137 0.00
fiber 51.08 20 8 60.22 9919 9880 17.89
fixnet3 6.62 6 0 47.01 1571 1479 610.12
fixnet4 4.79 6 0 12.49 1524 1427 160.75
fixnet6 3.98 6 0 12.03 1352 1240 202.26
khb05250 73.59 18 0 84.21 721 693 14.43
l152lav 10.87 12 2 11.09 6970 6885 2.02
lseu 55.19 12 7 55.19 291 286 0.00
markshare1 0 6 3 0 66 56 0.00
markshare2 0 7 3 0 91 69 0.00
mas74 6.52 9 0 7.44 261 239 14.11
mas76 6.36 9 0 7.12 225 201 11.95
misc03 8.62 14 12 8.62 1185 1182 0.00
misc06 26.09 9 0 26.09 29 0 0.00
misc07 0 21 19 0 1915 1912 0.00
mod008 20.10 4 0 20.11 48 43 0.05
mod010 100 5 1 100 6089 5947 0.00
mod011 27.87 15 3 32.47 439 87 16.51
modglob 13.32 16 2 15.76 107 13 18.32
p0033 12.60 5 1 57.04 85 80 352.70
p0201 16.89 18 11 19.31 1233 1228 14.33
p0282 3.47 24 17 5.38 1416 1409 55.04
p0548 3.06 19 2 17.37 2958 2914 467.65
p2756 0.21 7 1 0.56 546 524 166.67
pk1 0 15 3 0 25 11 0.00
pp08a 54.30 50 0 64.89 3859 3771 19.50
pp08aCUTS 33.13 43 0 41 1136 1073 23.75
qiu 0.33 36 25 0.33 36 25 0.00
rentacar 0 2 0 0 4 2 0.00
rgn 3.15 17 10 3.15 697 689 0.00
set1ch 30.36 125 1 44.26 12086 11822 45.78
stein27 0 21 18 0 846 843 0.00
stein45 0 35 30 0 2395 2389 0.00
swath 5.50 13 0 9.10 3678 3655 65.45
vpm1 20.73 12 0 21.94 480 458 5.84
vpm2 10.14 27 3 15.42 2160 2118 52.07
Average 22.38 18.51 5.15 28.00 1821.12 1773.61 61.50
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Table 2.6: MIGs + Conic cuts, Strengthening, 1 round

Instance G% G add# G del# GC% GC add# GC del# impr.%
air03 100 5 1 100 6840 6764 0.00
cap6000 41.65 2 1 41.65 998 997 0.00
danoint 0.26 24 14 0.26 24 14 0.00
dcmulti 45.40 48 13 46 531 496 1.32
egout 21.45 15 0 35.15 1482 1456 63.87
enigma 100 1 0 100 199 198 0.00
fiber 51.08 20 8 52.03 13264 13178 1.86
fixnet3 6.62 6 0 49.30 1360 1266 644.71
fixnet4 4.79 6 0 10.41 1312 1211 117.33
fixnet6 3.98 6 0 11.51 1156 1051 189.20
khb05250 73.59 18 0 77.62 731 704 5.48
l152lav 10.87 12 2 24.87 8735 8650 128.79
lseu 55.19 12 7 55.19 290 284 0.00
markshare1 0 6 3 0 64 55 0.00
markshare2 0 7 3 0 89 73 0.00
mas74 6.52 9 0 7.15 259 236 9.66
mas76 6.36 9 0 7.62 217 190 19.81
misc03 8.62 14 12 8.62 1317 1312 0.00
misc06 26.09 9 0 26.09 53 1 0.00
misc07 0 21 19 0 2304 2298 0.00
mod008 20.10 4 0 20.27 52 46 0.85
mod010 100 5 1 100 8699 8557 0.00
mod011 27.87 15 3 28.60 443 60 2.62
modglob 13.32 16 2 13.94 46 2 4.65
p0033 12.60 5 1 24.59 94 89 95.16
p0201 16.89 18 11 16.89 716 708 0.00
p0282 3.47 24 17 5.40 1445 1436 55.62
p0548 3.06 19 2 6.53 2645 2599 113.40
p2756 0.21 7 1 0.21 369 346 0.00
pk1 0 15 3 0 24 11 0.00
pp08a 54.30 50 0 57.01 4013 3933 4.99
pp08aCUTS 33.13 43 0 34.32 1498 1424 3.59
qiu 0.33 36 25 0.33 36 25 0.00
rentacar 0 2 0 0 5 3 0.00
rgn 3.15 17 10 3.15 661 651 0.00
set1ch 30.36 125 1 37.43 15504 15243 23.29
stein27 0 21 18 0 432 428 0.00
stein45 0 35 30 0 1224 1212 0.00
swath 5.50 13 0 7.14 3873 3848 29.82
vpm1 20.73 12 0 22.73 605 577 9.65
vpm2 10.14 27 3 14.23 2298 2244 40.34
Average 22.38 18.51 5.15 25.52 2095.29 2045.76 38.20
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Table 2.7: MIGs + Type 1 Triangles + Conic cuts, No strengthening, 1 round

Instance G% G add# G del# GTC% GTC add# GTC del# impr.%
air03 100 5 1 100 13107 13031 0.00
cap6000 41.65 2 1 41.65 1442 1440 0.00
danoint 0.26 24 14 0.26 24 14 0.00
dcmulti 45.40 48 13 45.95 708 668 1.21
egout 21.45 15 0 61.13 3520 3485 184.99
enigma 100 1 0 100 343 342 0.00
fiber 51.08 20 8 52 26050 25968 1.80
fixnet3 6.62 6 0 56.19 2925 2827 748.79
fixnet4 4.79 6 0 10.40 2830 2733 117.12
fixnet6 3.98 6 0 11.27 2502 2378 183.17
khb05250 73.59 18 0 84.21 1434 1404 14.43
l152lav 10.87 12 2 13.23 16168 16079 21.71
lseu 55.19 12 7 55.19 584 579 0.00
markshare1 0 6 3 0 124 118 0.00
markshare2 0 7 3 0 173 164 0.00
mas74 6.52 9 0 6.67 511 497 2.30
mas76 6.36 9 0 6.36 433 421 0.00
misc03 8.62 14 12 8.62 2534 2529 0.00
misc06 26.09 9 0 26.09 73 5 0.00
misc07 0 21 19 0 4310 4305 0.00
mod008 20.10 4 0 20.10 96 90 0.00
mod010 100 5 1 100 15812 15670 0.00
mod011 27.87 15 3 28.89 867 103 3.66
modglob 13.32 16 2 13.93 137 40 4.58
p0033 12.60 5 1 12.82 182 176 1.75
p0201 16.89 18 11 16.89 2107 2099 0.00
p0282 3.47 24 17 6.19 2878 2870 78.39
p0548 3.06 19 2 18.10 5650 5586 491.50
p2756 0.21 7 1 0.36 908 877 71.43
pk1 0 15 3 0 34 22 0.00
pp08a 54.30 50 0 64.36 7822 7733 18.53
pp08aCUTS 33.13 43 0 37.89 2591 2523 14.37
qiu 0.33 36 25 0.33 36 25 0.00
rentacar 0 2 0 0 7 5 0.00
rgn 3.15 17 10 3.15 1341 1333 0.00
set1ch 30.36 125 1 44.37 27465 27196 46.15
stein27 0 21 18 0 1257 1254 0.00
stein45 0 35 30 0 3584 3577 0.00
swath 5.50 13 0 5.65 7790 7757 2.73
vpm1 20.73 12 0 20.73 1073 1045 0.00
vpm2 10.14 27 3 15.80 4431 4361 55.82
Average 22.38 18.51 5.15 26.56 4045.44 3983.63 50.35
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Table 2.8: MIGs + Type 1 Triangles, No strengthening, 1 round

Instance G% G add# G del# GT% GT add# GT del# impr.%
air03 100 5 1 100 5486 5410 0.00
cap6000 41.65 2 1 41.65 497 495 0.00
danoint 0.26 24 14 0.26 24 14 0.00
dcmulti 45.40 48 13 45.88 225 190 1.06
egout 21.45 15 0 60.76 2038 2006 183.26
enigma 100 1 0 100 145 144 0.00
fiber 51.08 20 8 51.82 10057 9994 1.45
fixnet3 6.62 6 0 47.01 1571 1479 610.12
fixnet4 4.79 6 0 8.80 1524 1431 83.72
fixnet6 3.98 6 0 10.46 1352 1238 162.81
khb05250 73.59 18 0 84.21 721 693 14.43
l152lav 10.87 12 2 10.87 7406 7316 0.00
lseu 55.19 12 7 55.19 297 292 0.00
markshare1 0 6 3 0 66 62 0.00
markshare2 0 7 3 0 91 85 0.00
mas74 6.52 9 0 6.52 261 249 0.00
mas76 6.36 9 0 6.36 225 213 0.00
misc03 8.62 14 12 8.62 1223 1221 0.00
misc06 26.09 9 0 26.09 29 0 0.00
misc07 0 21 19 0 2008 2006 0.00
mod008 20.10 4 0 20.10 48 42 0.00
mod010 100 5 1 100 6984 6842 0.00
mod011 27.87 15 3 28.67 439 53 2.87
modglob 13.32 16 2 13.33 107 11 0.08
p0033 12.60 5 1 12.72 85 79 0.95
p0201 16.89 18 11 16.89 1310 1303 0.00
p0282 3.47 24 17 5.38 1416 1410 55.04
p0548 3.06 19 2 16.67 2958 2913 444.77
p2756 0.21 7 1 0.36 546 515 71.43
pk1 0 15 3 0 25 13 0.00
pp08a 54.30 50 0 64.32 3859 3773 18.45
pp08aCUTS 33.13 43 0 37.82 1136 1071 14.16
qiu 0.33 36 25 0.33 36 25 0.00
rentacar 0 2 0 0 4 2 0.00
rgn 3.15 17 10 3.15 697 690 0.00
set1ch 30.36 125 1 44.20 12086 11822 45.59
stein27 0 21 18 0 846 843 0.00
stein45 0 35 30 0 2395 2389 0.00
swath 5.50 13 0 5.64 3744 3711 2.55
vpm1 20.73 12 0 20.73 480 459 0.00
vpm2 10.14 27 3 14.60 2160 2116 43.98
Average 22.38 18.51 5.15 26.08 1868.46 1820 42.85
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Table 2.9: MIGs + Conic cuts, No strengthening, 1 round

Instance G% G add# G del# GC% GC add# GC del# impr.%
air03 100 5 1 100 7626 7550 0.00
cap6000 41.65 2 1 41.65 947 945 0.00
danoint 0.26 24 14 0.26 24 14 0.00
dcmulti 45.40 48 13 45.79 531 496 0.86
egout 21.45 15 0 35.03 1497 1471 63.31
enigma 100 1 0 100 199 198 0.00
fiber 51.08 20 8 51.29 16013 15934 0.41
fixnet3 6.62 6 0 49.30 1360 1266 644.71
fixnet4 4.79 6 0 10.41 1312 1214 117.33
fixnet6 3.98 6 0 9.95 1156 1040 150.00
khb05250 73.59 18 0 77.62 731 705 5.48
l152lav 10.87 12 2 13.23 8774 8684 21.71
lseu 55.19 12 7 55.19 299 294 0.00
markshare1 0 6 3 0 64 59 0.00
markshare2 0 7 3 0 89 83 0.00
mas74 6.52 9 0 6.67 259 245 2.30
mas76 6.36 9 0 6.36 217 205 0.00
misc03 8.62 14 12 8.62 1325 1320 0.00
misc06 26.09 9 0 26.09 53 1 0.00
misc07 0 21 19 0 2323 2318 0.00
mod008 20.10 4 0 20.10 52 46 0.00
mod010 100 5 1 100 8833 8691 0.00
mod011 27.87 15 3 27.92 443 60 0.18
modglob 13.32 16 2 13.92 46 2 4.50
p0033 12.60 5 1 12.82 102 96 1.75
p0201 16.89 18 11 16.89 815 807 0.00
p0282 3.47 24 17 5.40 1486 1477 55.62
p0548 3.06 19 2 6.37 2711 2666 108.17
p2756 0.21 7 1 0.21 369 358 0.00
pk1 0 15 3 0 24 12 0.00
pp08a 54.30 50 0 56.84 4013 3933 4.68
pp08aCUTS 33.13 43 0 33.48 1498 1426 1.06
qiu 0.33 36 25 0.33 36 25 0.00
rentacar 0 2 0 0 5 3 0.00
rgn 3.15 17 10 3.15 661 653 0.00
set1ch 30.36 125 1 37.37 15504 15243 23.09
stein27 0 21 18 0 432 428 0.00
stein45 0 35 30 0 1224 1212 0.00
swath 5.50 13 0 5.59 4059 4027 1.64
vpm1 20.73 12 0 20.73 605 578 0.00
vpm2 10.14 27 3 14.01 2298 2251 38.17
Average 22.38 18.51 5.15 24.70 2195.49 2147.22 30.36
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Table 2.10: MIGs + Type 1 Triangles + Conic cuts, Strengthening, 5 rounds

round G% GTC% impr.%
1 22.38 28.82 71.35
2 28.22 33.98 84.08
3 31.07 36.68 84.23
4 32.83 37.78 78.76
5 34.61 38.86 77.28

Table 2.11: CoinCglGomory + Type 1 Triangles + Conic cuts, Strengthening, 5 rounds

round G% GTC% impr.%
1 19.49 29.06 71.46
2 24.94 34.01 93.23
3 27.87 36.70 89.57
4 29.57 37.95 86.19
5 30.48 38.78 85.04

94



Chapter 3

Monoidal Cut Strengthening
Revisited

The work presented in this chapter has been published as “Monoidal Cut Strengthening
Revisited” by E. Balas and A. Qualizza in Discrete Optimization 9-1, 2012.

3.1 Introduction

Consider the q-term disjunction

∨
i∈Q

(∑
j∈J

aijxj ≥ ai0

)
, (3.1.1)

where xj ≥ 0, j ∈ J and ai0 > 0, i ∈ Q. For convenience of notation let q = |Q|. It is well
known [6] that (3.1.1) yields a disjunctive cut of the form βx ≥ 1, with

βj = max
i∈Q

{
aij
ai0

}
. (3.1.2)

If xj ∈ Z, j ∈ J1 ⊆ J , then (3.1.2) can be strengthened. There exist two distinct strength-
ening procedures for disjunctive cuts. The first is based on the standard modularization of
the coefficients aij and is used in [32] among others; in the rest of the chapter we refer to
this technique as the “standard strengthening”. The second is the monoidal strengthening of
Balas and Jeroslow [11]. In the literature [29, 32, 33], Monoidal cut strengthening is treated
as equivalent to “standard strengthening” and indeed if one uses the set of integer points
as monoid in Theorem 1 of [11] the strengthened coefficients are the same. But Monoidal
cut strengthening is more general as changing the monoid adopted results in different cut
strengthenings. In this chapter we introduce a variation of [11] which yields different cuts,
that sometimes dominate the cuts resulting from both of the above procedures.
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3.1.1 Monoidal Cut Strengthening

Monoidal cut strengthening can be outlined as follows. If valid lower bounds bi ≥ 0 for the
quantities

∑
j∈J aijxj, i ∈ Q, are known, then monoidal cut strengthening can be applied to

obtain a stronger cut β̄x ≥ 1, with

β̄j :=

{
minmj∈M maxi∈Q

{
aij+(ai0−bi)m

i
j

ai0

}
j ∈ J1

βj j ∈ J \ J1
(3.1.3)

where M is the monoid M := {m ∈ Zq :
∑

i∈Qmi ≥ 0}. The validity of β̄x ≥ 1 follows from
the following

Proposition 3.1.1. Balas, Jeroslow [11]. Any x satisfying xj ≥ 0, j ∈ J, xj ∈ Z, j ∈ J1 and
(3.1.1) such that

∑
j∈J aijxj ≥ bi, i ∈ Q, also satisfies the disjunction

∨
i∈Q

∑
j∈J1

(
aij + (ai0 − bi)m

i
j

)
xj +

∑
j∈J\J1

aijxj ≥ ai0

 . (3.1.4)

Proof. We need to consider 3 cases based on the value of
∑

j∈J1 m
i
jxj, i ∈ Q.

• If
∑

j∈J1 m
i
jxj = 0,∀i ∈ Q then the disjunctions (3.1.1) and (3.1.4) are equivalent.

• If
∑

j∈J1 m
i
jxj ≥ 1, for some i ∈ Q the i-th term of (3.1.4) becomes∑

j∈J aijxj ≥ ai0 − (aij − bi)
∑

j∈J1 m
i
jxj

which is satisfied since
∑

j∈J aijxj ≥ bi holds by assumption.

• If
∑

j∈J1 m
i
jxj ≤ −1 for some i ∈ Q

then ∃i′ ∈ Q :
∑

j∈J1 m
i′
j xj ≥ 1 since the monoidal condition

∑
i∈Qmi

j ≥ 0 and
xj ≥ 0, j ∈ J1 hold.
The previous case applies to i′.

Applying the formula (3.1.2) to the disjunction (3.1.4) substituted for (3.1.1) yields β̄x ≥
1 with coefficients (3.1.3). A glance at expression (3.1.3) suggests that the role of the integers
mi

j, i ∈ Q, in strengthening β̄j consists in reducing the value of the largest term in brackets
“at the cost” of increasing the values of several smaller terms, this limit being enforced by
the condition

∑
i∈Qmi

j ≥ 0. The more terms there are, the lesser the amount by which
the value of each term has to be increased in order to offset a given decrease in the value
of the largest term. This suggests that from the point of view of monoidal strengthening,
there may be an advantage in weakening a disjunction by adding extra terms to it. While
a weaker disjunction can only yield a weaker (unstrengthened) cut, applying to such a cut
the monoidal strengthening procedure may result in a stronger cut than the one obtained
by applying the same strengthening procedure to the cut from the original disjunction.
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In this chapter we characterize the family of cuts obtainable through this technique (Sec-
tion 3.2). We then apply the results to the special case of simple split disjunctions (Section
3.2.1), and to a class of intersection cuts from two rows of the simplex tableau (Section 3.2.2).
In both instances we specify conditions under which the new cuts have smaller coefficients
than the cuts obtained by both the standard and the monoidal strengthening procedures. In
Section 3.2.3 we briefly discuss the case of cuts obtained by strictly weakening a disjunction.

3.2 Lopsided cuts

The next Theorem introduces a new class of valid cuts derived from disjunctions equivalent
to (3.1.1) but with additional redundant terms.

Theorem 3.2.1. For each k ∈ Q, the cut β̃kx ≥ 1, with

β̃k
j :=

 min

{
akj+ak0−bk

ak0
,minmj∈M

mk
j≥0

maxi∈Q

{
aij+(ai0−bi)m

i
j

ai0

}}
j ∈ J1

βj j ∈ J \ J1
(3.2.1)

is valid.

Proof. Consider the disjunction

∨
i∈Q

(∑
j∈J

aijxj ≥ ai0

)
∨

(∑
j∈J

akjxj ≥ ak0

)
∨ · · · ∨

(∑
j∈J

akjxj ≥ ak0

)
︸ ︷︷ ︸

r terms

. (3.2.2)

(3.2.2) contains (q+ r) terms of which (r+1) are copies of the k-th term of (3.1.1). Adding
new terms to a given disjunction in general weakens the latter, hence is a legitimate operation.
If the new terms are just replicas of an existing term, then the operation leaves the solution
set of the disjunction unchanged. The number r of replicated terms does not affect this
reasoning, and will be specified later. By monoidal strengthening applied to (3.2.2) and
Proposition 3.1.1 a cut γkx ≥ 1 with coefficients

γk
j (mj) :=


max

{
maxi∈Q

{
aij+(ai0−bi)m

i
j

ai0

}
,
akj+(ak0−bk)m

q+1
j

ak0
, . . . ,

akj+(ak0−bk)m
q+r
j

ak0

} j ∈ J1

βj j ∈ J \ J1

(3.2.3)

is valid for any mj ∈ M ′ = {m ∈ Zq+r :
∑q+r

i=1 m
i ≥ 0}, j ∈ J1. Note that for j ∈ J \ J1

the coefficients γk
j = β̃k

j = βj for j ∈ J \ J1 are not affected by the strengthening. For

j ∈ J1 we will show that there exists mj ∈ M ′ such that γk
j (mj) = β̃k

j . We consider two
cases: one where we set mi

j = 1, i ∈ {k, q+ 1, q+ 2, . . . , q+ r} and the other where we allow
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mi
j = 0, i ∈ {k, q + 1, q + 2, . . . , q + r} as this might yield better coefficients. Let

m̄i
1j :=

{
t̄ij = max

{
t ∈ Z :

aij+(ai0−bi)t

ai0
≤ akj+ak0−bk

ak0

}
i ∈ Q \ {k}

1 i ∈ {k} ∪ {q + 1, . . . , q + r}.

Replacing the values mj with m̄1j in (3.2.3) all the ratios corresponding to the terms different

than k are reduced to a value less than or equal to the smallest ratio
akj+ak0−bk

ak0
, therefore

γk
j (m̄1j) =

akj+ak0−bk
ak0

. The monoidal condition
∑q+r

i=1 m̄
i
1j =

∑q
i=1,i 6=q t̄

i
j+r+1 ≥ 0 is satisfied if

we choose r to be r = maxj∈J1
∑

i∈Q\{k}(−t̄ij)−1. Let m̄2j be the vector in M ′ that minimizes

the expression (3.2.3) subject to the extra condition mi
j ≥ 0, i ∈ {k}∪{q+1, . . . , q+r}. The

coefficient γk
j (m̄2j) cannot be greater than the coefficient obtained by (3.1.3) if we require

mk
j ≥ 0 i.e.

γk
j (m̄2j) ≤ minmj∈M

mk
j≥0

maxi∈Q

{
aij+(ai0−bi)m

i
j

ai0

}
.

Therefore β̃k
j ≥ min{γk

j (m̄1j), γ
k
j (m̄2j)} for j ∈ J1. The validity of β̃k

j follows from the validity
of γk

j (mj),∀mj ∈M ′.

Theorem 3.2.1 can also be proved using Remark 3.1 of [11] that states that Proposition
3.1.1 remains valid if we use monoids having the more general form

M(µ) =

{
m ∈ Zq :

∑
i∈Q

µim
i ≥ 0

}
,

where µi > 0, i ∈ Q. It can be shown that the cut 3.2.1 can be obtained by applying the
general monoidal cut strengthening on (3.1.1) using the monoid M(µ̄) where µ̄ is

µ̄i :=

{
1 i ∈ Q \ {k}
r + 1 i = k.

and r is defined as before.
We call β̃kx ≥ 1 the k-th Lopsided cut associated with the disjunction (3.1.1). The upshot

of Theorem 3.2.1 is that given a q-term disjunction (3.1.1) where each term is unique, there
exist q Lopsided cuts β̃kx ≥ 1, k ∈ Q that are in general different from β̄x ≥ 1.

To compute the coefficients (3.2.1) we need to determine

min
mj∈M
mk

j≥0

max
i∈Q

{
aij + (ai0 − bi)m

i
j

ai0

}
. (3.2.4)

We can solve (3.2.4) using Algorithm 1 of [11] with the expression λr(αr+mr) = maxi∈Q λi(αi
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+mi) replaced by

λr(αr +mr) =

{
maxi∈Q λi(αi +mi) if mk ≥ 1
maxi∈Q

i6=k
λi(αi +mi) otherwise (3.2.5)

The expression (3.2.5) guarantees that mk ≥ 0 since r ∈ Q is the index of the element
of m that is decremented by 1 unit in the current iteration of the algorithm. The proof
of correctness of the modified algorithm remains essentially unchanged. The algorithm has
complexity O(|Q| ·maxi∈Q{m̄i}) where m̄ is the vector that minimizes (3.2.4) .

Corollary 3.2.2. If β̃k
j < β̄j then β̃k

j =
akj+ak0−bk

ak0
for j ∈ J1.

Proof. Notice that

β̃k
j < β̄j = min

mj∈M
max
i∈Q

{
aij + (ai0 − bi)m

i
j

ai0

}
≤ min

mj∈M
mk

j≥0

max
i∈Q

{
aij + (ai0 − bi)m

i
j

ai0

}
. (3.2.6)

From (3.2.1) and (3.2.6) we have β̃k
j =

akj+ak0−bk
ak0

.

The next Corollary gives a weaker version of the Lopsided cuts that does not require
optimizing over a monoid.

Corollary 3.2.3. For each k ∈ Q, the cut δkx ≥ 1, with

δkj :=

{
min

{
akj+ak0−bk

ak0
,maxi∈Q

{
aij
ai0

}}
j ∈ J1

βj j ∈ J \ J1
(3.2.7)

is valid.

Proof. Note that

min
mj∈M
mk

j≥0

max
i∈Q

{
aij + (ai0 − bi)m

i
j

ai0

}
≤ max

i∈Q

{
aij
ai0

}

for j ∈ J1, therefore β̃k
j ≤ δkj and thus δkx ≥ 1 is valid.

3.2.1 Simple split disjunction

Now consider a Mixed Integer Program, and let

y = a0 −
∑

j∈J ajxj

xj ≥ 0, j ∈ J
xj ∈ Z, j ∈ J1 ⊆ J

(3.2.8)

be a row of the simplex tableau associated with a basic solution to its linear relaxation,
where y ∈ {0, 1} and 0 < a0 < 1. The Gomory Mixed Integer (GMI) cut from (3.2.8) can
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be derived as a disjunctive cut from (y ≤ 0) ∨ (y ≥ 1), or(∑
j∈J

ajxj ≥ a0

)
∨

(∑
j∈J

(−aj)xj ≥ 1− a0

)
(3.2.9)

as αx ≥ 1, with

αj := max

{
aj
a0

,
−aj
1− a0

}
, j ∈ J, (3.2.10)

which can be strengthened to ᾱx ≥ 1 by using the integrality of xj, j ∈ J1, with

ᾱj :=

{
min

{
aj−bajc

a0
,
−aj+daje

1−a0

}
j ∈ J1

αj j ∈ J \ J1.
(3.2.11)

As (3.2.9) and (3.2.10) are a special case of (3.1.1) and (3.1.2), the coefficients ᾱj of (3.2.11)
can be obtained by monoidal cut strengthening. Indeed, as in this case b1 = a0−1, b2 = −a0,
we have a0 − b1 = 1, 1− a0 − b2 = 1, and (3.2.11) becomes (3.2.12)

β̄j :=

{
min(m1

j ,m
2
j )∈M max

{
aj+m1

j

a0
,
−aj+m2

j

1−a0

}
j ∈ J1

αj j ∈ J \ J1
(3.2.12)

which is a special case of (3.1.3). It is not hard to see that the minimum in the expression

for β̄j, j ∈ J1, is attained for the smaller of
aj−bajc

a0
and

−aj+daje
1−a0

.

Theorem 3.2.4. α+x ≥ 1 and α−x ≥ 1 are valid cuts, with

α+
j :=


−aj+1

1−a0
j ∈ J+

1 := {j ∈ J1 : aj > 1}
min

{
aj−bajc

a0
,
−aj+daje

1−a0

}
j ∈ J>

1 := {j ∈ J1 : a0 − 1 ≤ aj ≤ 1}

max
{

aj
a0
,

−aj
1−a0

}
j ∈ (J \ J1) ∪ {j ∈ J1 : aj < a0 − 1}

(3.2.13)

which we call Right Lopsided cut and

α−
j :=


aj+1

a0
j ∈ J−

1 := {j ∈ J1 : aj < −1}
min

{
aj−bajc

a0
,
−aj+daje

1−a0

}
j ∈ J<

1 := {j ∈ J1 : −1 ≤ aj ≤ a0}

max
{

aj
a0
,

−aj
1−a0

}
j ∈ (J \ J1) ∪ {j ∈ J1 : aj > a0}

(3.2.14)

which we call Left Lopsided cut.

Proof. We give a proof of the validity of the cut α+x ≥ 1. The proof of validity of α−x ≥ 1
is analogous. Applying Theorem 3.2.1 to (3.2.9) with k = 2 we get β̃2

j = α+
j for j ∈ J \ J1
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and β̃2
j = min {A,B} for j ∈ J1 where

A =
−aj+1

1−a0

B = minmj∈M
m2

j≥0

max
{

aj+m1
j

a0
,
−aj+m2

j

1−a0

}
= minm2

j∈Z
m2

j≥0

max
{

aj−m2
j

a0
,
−aj+m2

j

1−a0

}
• If aj > 1 then A < 0, B ≥ 0 and β̃2

j = A = α+
j ;

• if a0 ≤ aj ≤ 1 then β̃2
j = A = B =

−aj+daje
1−a0

= α+
j ;

• if 0 ≤ aj < a0 then A > 1, B ≤ 1 and β̃2
j = B =

aj−bajc
a0

= α+
j ;

• if aj < 0 then A > B =
−aj
1−a0

therefore β̃2
j = max

{
aj
a0
,

−aj
1−a0

}
= α+

j .

Corollary 3.2.5. If aj ≥ a0− 1, j ∈ J1 and J+
1 6= ∅, the cut α+x ≥ 1 strictly dominates the

GMI cut. If aj ≤ a0, j ∈ J1 and J−
1 6= ∅, the cut α−x ≥ 1 strictly dominates the GMI cut.

Example Consider the following row of a simplex tableau

y = 0.2− 1.5x1 + 0.3x2 + 0.4x3 + 0.6x4 − 4.3x5 − 0.1x6 (3.2.15)

subject to the additional constraints y ∈ {0, 1} and xj ∈ Z, j ∈ J1 = {1, . . . , 6}. The point
ȳ = 0; x̄1 = x̄2 = x̄3 = x̄4 = 1; x̄5 = x̄6 = 0 is a feasible integer solution. The GMI cut
obtained from this row is

0.625x1 + 0.375x2 + 0.5x3 + 0.75x4 + 0.875x5 + 0.5x6 ≥ 1. (3.2.16)

Applying Theorem 3.2.4 we obtain a cut α+x ≥ 1 that strictly dominates (3.2.16). For
(3.2.15) the index sets J+

1 , J
>
1 are respectively J+

1 = {1, 5} and J>
1 = {2, 3, 4, 6}. Therefore

we have α+
1 =

−aj+1

1−a0
= −0.5

0.8
= −0.625 and α+

5 =
−aj+1

1−a0
= −3.3

0.8
= −4.125 and the remaining

coefficients α+
j for j ∈ J+

1 are the same as in (3.2.16). The cut α+x ≥ 1 is then

− 0.625x1 + 0.375x2 + 0.5x3 + 0.75x4 − 4.125x5 + 0.5x6 ≥ 1. (3.2.17)

Note that (3.2.17) is tight for the solution (ȳ, x̄1, . . . , x̄6) while the GMI cut (3.2.16) has a
slack of 1.25.

In Figure 1 we illustrate graphically the value of the cut coefficients for the GMI cut and
the two Lopsided cuts given in (3.2.11), (3.2.13) and (3.2.14) for an arbitrary tableau row
with a0 = 0.3. The cut coefficients are shown on the vertical axis as a function of the tableau
row coefficient values (−aj) shown on the horizontal axis.

As the GMI cut can be derived in different ways [47, 11], the same holds also for the two
cuts in Theorem (3.2.4). Indeed, it can be shown that the cut α+x ≥ 1 can be obtained by
dividing the source row in (3.2.8) by a large number and then deriving a GMI cut, and a
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Figure 3.1: Coefficient values for the GMI and the Lopsided cuts for the case a0 = 0.3.

similar procedure yields the cut α−x ≥ 1. However, in the case of a more general disjunction
we do not know of any alternative method for deriving the cut of Theorem 3.2.1 or Corollary
3.2.3.

In Table 3.1 we compare the GMI relaxation (denoted by G) and the relaxation where
both GMI cuts and Lopsided cuts are generated (denoted by G+L). In both cases the cuts
were applied for only 1 round. To measure the strength of the relaxations we consider the
duality gap closed which is computed as

Gap = 100
Copt − LPopt

IPopt − LPopt

(3.2.18)

where IPopt, LPopt and Copt are respectively the value of the optimal integer solution, the
value of the linear relaxation and the value of the relaxation currently analyzed. The columns
G# and G + L# indicate the number of cuts generated, G% and G + L% indicate the gap
computed according to formula (3.2.18). The column imp shows the difference between
G% and G + L%, and the column imp% indicates the percentage improvement produced by
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adding the Lopsided cuts on top of the GMI relaxation. For our experiments we considered
the entire collection of MIPLIB3 C V2 [43] that contain some 0-1 variables. In Table 3.1 we
only show those instances for which the percentage improvement given by the Lopsided cuts
exceeds 1%.

Table 3.1: Computational results with Lopsided cuts on the simple split disjunction

Instance G# G% G+ L# G+ L% imp%

aflow40b 27 10.60 79 10.76 1.51
air04 156 8.44 582 8.53 1.07
blend2 5 15.98 11 16.17 1.19
dcmulti 45 47.69 53 48.36 1.40
gesa2 52 25.10 66 26.25 4.58
harp2 27 22.05 72 22.56 2.31
l152lav 9 12.80 119 15.18 18.59
mas76 9 6.36 25 6.53 2.67
mkc 126 1.83 330 4.25 132.24
modglob 16 13.32 29 14.05 5.48
vpm2 21 10.79 36 11.25 4.26

Although in many problems the Lopsided cuts produce no improvement, in some cases
the impact is substantial. As we did in Chapter 2, for the computational results presented
here we also followed the approach used in [15]. We performed statistical tests to compare
the relaxation strength produced by Gomory cuts and Gomory+Lopsided cuts. Experiments
show that the improvement given by the Lopsided cuts after one round of cuts at depth 0 of
the branch-and-bound tree is statistically significant with a 95% confidence level. At depths
8, 16 and 24 the improvement is not statistically significant. This shows that the marginal
improvement produced by the Lopsided cuts on the root relaxation is lost at further branch-
and-bound depths. For the computations we used a single core of a Linux 2.6.32-32 computer
with an Intel Core 2 Duo 2.66GHz with 4GB of memory.

Connection to K-cuts by Cornuéjols et al.

Cornuéjols et al. in [26] showed that valid cuts for (3.2.8) that are different from the GMI
cut can be obtained by applying the Gomory Mixed Integer procedure to positive integer
multiples of the source row. We will now give a derivation of Lopsided cuts for the Simple
Split Disjunction which uses a similar approach except that instead of multiply the source
row by a positive integer we divide it by a positive integer. This variation has not been
considered in the literature. When the source row coefficients are divided by a given integer
constant M , the coefficient associated to the basic variable becomes fractional and and
therefore the Gomory Mixed Integer procedure will associate a non-zero cut coefficient αy

to it. This does not occur if we consider a multiple of the source row.
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Let fj = aj − bajc, j ∈ J1 and f0 = a0 − ba0c = a0. The GMI cut from (3.2.8) is∑
fj≤f0,j∈J1

fj
f0
xj +

∑
fj>f0,j∈J1

1− fj
1− f0

xj +
∑

aj≤0,j∈J\J1

−aj
1− f0

xj +
∑

aj>0,j∈J\J1

aj
f0
xj ≥ 1 (3.2.19)

Now, suppose we divide (3.2.8) by a number M ∈ Z, with

M > max
j∈J
{|aj|} (3.2.20)

Thus we have the scaled row

1

M
y +

∑
j∈J1

aj
M

xj +
∑

j∈J\J1

aj
M

xj =
a0
M

(3.2.21)

Let f̄j =
aj
M
− b aj

M
c, j ∈ J1 and f̄0 =

a0
M
− b a0

M
c. Note that by (3.2.20)

f̄j :=

{ aj
M

aj ≥ 0
M+aj
M

aj < 0
(3.2.22)

for j ∈ J1. The GMI cut from (3.2.21) is

M − 1

M − a0
y +

∑
f̄j≤f̄0,j∈J1

f̄j
f̄0
xj +

∑
f̄j>f̄0,j∈J1

1− f̄j
1− f̄0

xj+

∑
aj≤0,j∈J\J1

−aj
M(1− f̄0)

xj +
∑

aj>0,j∈J\J1

aj
Mf̄0

xj ≥ 1 (3.2.23)

Note that in our case fy > f0 since ( 1
M

> a0
M
), therefore the coefficient for y in (3.2.23) is

1−fy
1−f0

=
1− 1

M

1−a0
M

= M−1
M−a0

. For y general integer we can have b > 1, and therefore we should also

consider the case 1
M

< a0
M

and the coefficient for y in (3.2.23) would be 1
a0
. In this study we

do not explore this more general case.
We now compare (3.2.23) with (3.2.19). Let us first rewrite (3.2.23) as

M − 1

M − a0
y +

∑
f̄j≤f̄0,aj≥0,j∈J1

f̄j
f̄0
xj +

∑
f̄j≤f̄0,aj<0,j∈J1

f̄j
f̄0
xj +

∑
f̄j>f̄0,aj≥0,j∈J1

1− f̄j
1− f̄0

xj+

∑
f̄j>f̄0,aj<0,j∈J1

1− f̄j
1− f̄0

xj +
∑

aj≤0,j∈J\J1

−aj
M(1− f̄0)

xj +
∑

aj>0,j∈J\J1

aj
Mf̄0

xj ≥ 1
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then we substitute the values for f̄0, f̄j

M − 1

M − a0
y +

∑
f̄j≤f̄0,aj≥0,j∈J1

aj
M

M

a0
xj +

∑
f̄j≤f̄0,aj<0,j∈J1

M + aj
M

M

a0
xj+

∑
f̄j>f̄0,aj≥0,j∈J1

M − aj
M

M

M − a0
xj +

∑
f̄j>f̄0,aj<0,j∈J1

−aj
M

M

M − a0
xj+

∑
aj≤0,j∈J\J1

−aj
M(1− a0

M
)
xj +

∑
aj>0,j∈J\J1

aj
M a0

M

xj ≥ 1

we simplify terms and remove the second summation since it contains no term (this follows
since (3.2.20) holds)

M − 1

M − a0
y +

∑
f̄j≤f̄0,aj≥0,j∈J1

aj
a0

xj +
∑

f̄j>f̄0,aj≥0,j∈J1

M − aj
M − a0

xj+

∑
f̄j>f̄0,aj<0,j∈J1

−aj
M − a0

xj +
∑

aj≤0,j∈J\J1

−aj
M − b

xj +
∑

aj>0,j∈J\J1

aj
a0

xj ≥ 1

and now we eliminate the variable y using (3.2.8)

∑
f̄j≤f̄0,aj≥0,j∈J1

(
aj
a0
− M − 1

M − a0
aj

)
xj +

∑
f̄j>f̄0,aj≥0,j∈J1

(
M − aj
M − a0

− M − 1

M − a0
aj

)
xj+

∑
f̄j>f̄0,aj<0,j∈J1

(
−aj

M − a0
− M − 1

M − a0
aj

)
xj +

∑
aj≤0,j∈J\J1

(
−aj

M − a0
− M − 1

M − a0
aj

)
xj+

∑
aj>0,j∈J\J1

(
aj
a0
− M − 1

M − a0
aj

)
xj ≥ 1− M − 1

M − a0
a0.

Simplifying we get

∑
f̄j≤f̄0,aj≥0,j∈J1

aj(1− a0)M)

a0(M − a0)
xj +

∑
f̄j>f̄0,aj≥0,j∈J1

(1− aj)M

M − a0
xj+

∑
f̄j>f̄0,aj<0,j∈J1

−ajM
M − a0

xj +
∑

aj≤0,j∈J\J1

−ajM
M − a0

xj+

∑
aj>0,j∈J\J1

aj(1− a0)M

b(M − a0)
xj ≥

(1− a0)M

M − a0
.
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We scale the cut to bring the right hand side to 1 by dividing the inequality by M−a0
(1−a0)M∑

f̄j≤f̄0,aj≥0,j∈J1

aj
a0

xj +
∑

f̄j>f̄0,aj≥0,j∈J1

1− aj
1− a0

xj +
∑

f̄j>f̄0,aj<0,j∈J1

−aj
1− a0

xj+

∑
aj≤0,j∈J\J1

−aj
1− a0

xj +
∑

aj>0,j∈J\J1

aj
a0

xj ≥ 1.

The conditions on the summations can be simplified to get the cut

∑
0≤aj≤a0,j∈J1

aj
a0

xj +
∑

aj>a0,j∈J1

1− aj
1− a0

xj +
∑

aj<0,j∈J1

−aj
1− a0

xj+

∑
aj≤0,j∈J\J1

−aj
1− a0

xj +
∑

aj>0,j∈J\J1

aj
a0

xj ≥ 1

which is equivalent to the Right Lopsided cut α+x ≥ 1 in (3.2.13). The Left Lopsided cut
can be obtained similarly by applying the same procedure to the complement of y.

3.2.2 Multiple term disjunctions

We now consider intersection cuts derived from 2 rows of the simplex tableau associated
with a basic solution of a Mixed Integer Linear Program. Let

y1 = a10 −
∑

j∈J a1jxj

y2 = a20 −
∑

j∈J a2jxj

xj ≥ 0, j ∈ J
xj ∈ Z, j ∈ J1 ⊆ J

(3.2.24)

be two rows of the simplex tableau associated with a basic solution to a linear relaxation
of a Mixed Integer Program, where xj, j ∈ J are nonbasic variables, yh ∈ {0, 1} are basic
variables with 0 < ah0 < 1, h ∈ {1, 2}.

Given a closed convex set S that contains the point (a10, a20, 0, . . . , 0) in its interior but
no feasible integer point, we can generate the intersection cut αicx ≥ 1 with coefficients

αic
j := minµ>0

{
1
µ
: (a10, a20) + µ(−a1j,−a2j) ∈ S

}
(3.2.25)

for j ∈ J as shown in [5, 2]. When J1 6= ∅ the standard strengthening used, for instance, in
[32], yields a stronger cut αstrx ≥ 1 where

αstr
j := min

µ>0
p1j ,p2j∈Z

{
1

µ
: (a10, a20) + µ(−a1j + p1j,−a2j + p2j) ∈ S

}
. (3.2.26)
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If S is polyhedral, i.e. its representation in terms of the basic variables is

S = {(y1, y2) ∈ R2 : d1iy1 + d2iy2 ≤ ei, i ∈ Q}, (3.2.27)

then the cut αicx ≥ 1 is a disjunctive cut derived from the disjunction ∨i∈Q(d1iy1+d2iy2 ≥ ei),
or ∨

i∈Q

(∑
j∈J

(−d1ia1j − d2ia2j)xj ≥ ei − d1ia10 − d2ia20

)
. (3.2.28)

Furthermore, if lower bounds are known for the left hand sides of the terms of (3.2.28),
then monoidal strengthening [11] can be used to obtain another strengthened cut β̄x ≥ 1,
generally different from (3.2.26).

We now consider the Lopsided cuts derived from Theorem 3.2.1 applied to the disjunction
(3.2.28). We will show that the Lopsided cuts are different from the cut αstrx ≥ 1 and the
monoidal strengthened cut β̄x ≥ 1. If certain conditions hold, the Lopsided cuts are stronger
than both. In the rest of the section we fix S to be the lattice free triangle with vertices
(0, 2); (2, 0); (0, 0), i.e.

S =
{
(y1, y2) ∈ R2 : y1 ≥ 0; y2 ≥ 0; y1 + y2 ≤ 2

}
. (3.2.29)

The point (a10, a20) is in the interior of S and S does not contain in its interior any feasible
integer point. The intersection cut αicx ≥ 1 from S can be derived from the disjunction(∑

j∈J

a1jxj ≥ a10

)
∨

(∑
j∈J

a2jxj ≥ a20

)
∨

(∑
j∈J

(−a1j − a2j)xj ≥ 2− a10 − a20

)
. (3.2.30)

The cut αicx ≥ 1 has coefficients

αic
j = max

{
a1j
a10

,
a2j
a20

,
−a1j − a2j
2− a10 − a20

}
, j ∈ J.

Similarly for αstrx ≥ 1 we have

αstr
j :=

{
minp1j ,p2j∈Z max

{
a1j+p1j

a10
,
a2j+p2j

a20
,
−a1j−a2j−p1j−p2j

2−a10−a20

}
j ∈ J1

αic
j j ∈ J \ J1.

The values b1 = a10 − 1;= b2 = a20 − 1; b3 = −a10 − a20 are valid lower bounds for the left
hand sides of the three terms of (3.2.30). Therefore the monoidal strengthened cut β̄jx ≥ 1
has coefficients

β̄j :=

{
minmj∈M max

{
a1j+m1

j

a10
,
a2j+m2

j

a20
,
−a1j−a2j+2m3

j

2−a10−a20

}
j ∈ J1

αic
j j ∈ J \ J1

where M = {m ∈ Z3 :
∑3

i=1 m
i ≥ 0}. Theorem 3.2.1 yields the cuts β̃kx ≥ 1, k ∈ {1, 2, 3}
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where

β̃k
j :=



min

{
a1j+1

a10
,minmj∈M

m1≥0

max
{

a1j+m1
j

a10
,
a2j+m2

j

a20
,
−a1j−a2j+2m3

j

2−a10−a20

}}
k = 1, j ∈ J1

min

{
a2j+1

a20
,minmj∈M

m2≥0

max
{

a1j+m1
j

a10
,
a2j+m2

j

a20
,
−a1j−a2j+2m3

j

2−a10−a20

}}
k = 2, j ∈ J1

min

{
−a1j−a2j+1

2−a10−a20
,minmj∈M

m3≥0

max
{

a1j+m1
j

a10
,
a2j+m2

j

a20
,
−a1j−a2j+2m3

j

2−a10−a20

}}
k = 3, j ∈ J1

αic
j j ∈ J \ J1.

The next three Propositions give sufficient conditions for a coefficient β̃k
j , k ∈ {1, 2, 3} to

be strictly less than β̄j, j ∈ J1.

Proposition 3.2.6. If a1j + a2j ≥ 2 for some j ∈ J1 then β̃3
j ≤ 0 < β̄j for j ∈ J1.

Proof. Since a1j + a2j ≥ 2 we have that β̃3
j ≤

−a1j−a2j+2

2−a10−a20
≤ 0. Now assume by contradiction

that β̄j ≤ 0. This implies that the following conditions hold

a1j +m1 ≤ 0
a2j +m2 ≤ 0
−a1j − a2j + 2m3 ≤ 0
m1 +m2 +m3 ≥ 0
a1j + a2j ≥ 2
mi ∈ Z, i ∈ {1, 2, 3}


(3.2.31)

The set defined as {z = (a1j, a2j,m1,m2,m3) ∈ R5 : Az ≤ b} where A and b are

A =


1 0 1 0 0
0 1 0 1 0
−1 −1 0 0 2
0 0 −1 −1 −1
−1 −1 0 0 0

 b =


0
0
0
0
−2

 (3.2.32)

is a relaxation of (3.2.31). Let c = (2, 2, 1, 2, 1). Since cA = 0, c ≥ 0, cb = −2 < 0 by Farkas
Lemma (3.2.32) is infeasible. Thus (3.2.31) is also infeasible and we reached a contradiction,
therefore β̄j > 0.

Proposition 3.2.7. If (2 + a20)a1j − a10a2j < −2− a10 − a20 then β̃1
j < β̄j for j ∈ J1.

Proof. Assume by contradiction that β̃1
k ≥ β̄j. Then the following conditions must be satis-

fied 

a1j+m1

a10
≤ a1j+1

a10
a2j+m2

a20
≤ a1j+1

a10−a1j−a2j+2m3

2−a10−a20
≤ a1j+1

a10

m1 +m2 +m3 ≥ 0
(2 + a20)a1j − a10a2j < −2− a10 − a20
mi ∈ Z, i ∈ {1, 2, 3}


(3.2.33)
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since β̃1
j ≤

a1j+1

a10
. The set defined as {z = (a1j, a2j,m1,m2,m3) ∈ R5 : Az ≤ b} where A and

b are

A =


0 0 1

a10
0 0

− 1
a10

1
a20

0 1
a20

0
a20−2

a10(2−a10−a20)
− 1

2−a10−a20
0 0 2

2−a10−a20

0 0 −1 −1 −1
(2 + a20) −a10 0 0 0

 b =


1

a10
1

a10
1

a10

0
−2− a10 − a20 − ε


(3.2.34)

is a relaxation of (3.2.33) for any ε > 0. Let c = (2a210(2−a20), 2a10a20(2−a20), a10(2−a20)(2−
a10−a20), 2a10(2−a20), 2−a20). Since cA = 0, c ≥ 0 cb = −ε(2−a20) < 0, by Farkas Lemma
(3.2.34) is infeasible. Thus, (3.2.33) is infeasible and we reached a contradiction, therefore
β̃1
j < β̄j.

Proposition 3.2.8. If −a20a1j + (2 + a10)a2j < −2− a10 − a20 then β̃2
j < β̄j for j ∈ J1.

Proof. Analogous to the proof of Lemma 3.2.7.

Similarly, we can derive some simple sufficient conditions for β̃k
j to strictly dominate the

coefficient αstr
j that follow immediately from the definition of the Lopsided cuts. Noting that

αstr
j ≥ 0, j ∈ J1 we have the following

Proposition 3.2.9. If (k = 1∧a1j < −1) or (k = 2∧a2j < −1) or (k = 3∧−a1j−a2j < −2)
then β̃k

j < 0 ≤ αstr
j .

In the next example we show that applying monoidal cut strengthening to a disjunc-
tion with redundant terms yields a stronger cut than the cut derived using the standard
strengthening or the monoidal strengthening.

Example Consider the 2-row relaxation

P =
{

(y, x) ∈ R8 :

y1 = 0.25 −0.15x1 +0.6x2 −0.4x3 −1.2x4 −2.9x5 +0.8x6

y2 = 0.5 +1.15x1 −0.1x2 −0.2x3 −1.6x4 +0.5x5 −2.5x6

xj ≥ 0, j ∈ J = {1, . . . , 6}
xj ∈ Z, j ∈ J1 = {4, 5, 6}
yk ∈ {0, 1}, k ∈ {1, 2}

}
.

(3.2.35)

The current basic solution to the relaxation (3.2.35) is (ȳ1, ȳ2, x̄) = (0.25, 0.5, 0̄) and it
violates the integrality conditions on y1, y2. We can derive an intersection cut αicx ≥ 1 from
S defined in (3.2.29) since (ȳ1, ȳ2) is in the interior of S. The coefficients αic

j are

αic
j = minµ>0

{
1
µ
: a10 + µ(−a1j) ≥ 0; a20 + µ(−a2j) ≥ 0;

a10 + a20 + µ(a1j + a2j) ≤ 2
} (3.2.36)
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Applying (3.2.36) to the instance (3.2.35) we compute the coefficients

αic
1 = minµ>0

{
1
µ
: 0.25 + µ(−0.15) ≥ 0; 0.5 + µ(1.15) ≥ 0; 0.75 + µ(1) ≤ 2

}
= 1

1.25
= 0.8

αic
2 = minµ>0

{
1
µ
: 0.25 + µ(0.6) ≥ 0; 0.5 + µ(−0.1) ≥ 0; 0.75 + µ(0.5) ≤ 2

}
= 1

2.5
= 0.4

αic
3 = minµ>0

{
1
µ
: 0.25 + µ(−0.4) ≥ 0; 0.5 + µ(−0.2) ≥ 0; 0.75 + µ(−0.6) ≤ 2

}
= 1

0.625
= 1.6

αic
4 = minµ>0

{
1
µ
: 0.25 + µ(−1.2) ≥ 0; 0.5 + µ(−1.6) ≥ 0; 0.75 + µ(−2.8) ≤ 2

}
= 1

0.2083
= 4.8

αic
5 = minµ>0

{
1
µ
: 0.25 + µ(−2.9) ≥ 0; 0.5 + µ(0.5) ≥ 0; 0.75 + µ(−2.4) ≤ 2

}
= 1

0.0862
= 11.6

αic
6 = minµ>0

{
1
µ
: 0.25 + µ(0.8) ≥ 0; 0.5 + µ(−2.5) ≥ 0; 0.75 + µ(−1.7) ≤ 2

}
= 1

0.2
= 5

Therefore the intersection cut is

0.8x1 + 0.4x2 + 1.6x3 + 4.8x4 + 11.6x5 + 5x6 ≥ 1. (3.2.37)

By applying standard strengthening on the integer variables x4, x5, x6 we get the coefficients

αstr
4 = min µ>0

p1j ,p2j∈Z

{
1
µ
: 0.25 + µ(−1.2 + p1) ≥ 0; 0.5 + µ(−1.6 + p2) ≥ 0;

0.75 + µ(−2.8p1 + p2) ≤ 2}
= minµ>0{ 1µ : 0.25 + µ(−1.2 + 1) ≥ 0; 0.5 + µ(−1.6 + 2) ≥ 0;

0.75 + µ(−2.8 + 1 + 2) ≤ 2
}

= 1
1.25

= 0.8.
αstr
5 = min µ>0

p1j ,p2j∈Z
{ 1
µ
: 0.25 + µ(−2.9 + p1) ≥ 0; 0.5 + µ(+0.5 + p2) ≥ 0;

0.75 + µ(−2.4 + p1 + p2) ≤ 2}
= minµ>0{ 1µ : 0.25 + µ(−2.9 + 3) ≥ 0; 0.5 + µ(+0.5 + 0) ≥ 0;

0.75 + µ(−2.4 + 3 + 0) ≤ 2}
= 1

2.0833
= 0.48.

αstr
6 = min µ>0

p1j ,p2j∈Z
{ 1
µ
: 0.25 + µ(0.8 + p1) ≥ 0; 0.5 + µ(−2.5 + p2) ≥ 0;

0.75 + µ(−1.7 + p1 + p2) ≤ 2}
= minµ>0{ 1µ : 0.25 + µ(0.8− 1) ≥ 0; 0.5 + µ(−2.5 + 3) ≥ 0;

0.75 + µ(−1.7− 1 + 3) ≤ 2}
= 1

1.25
= 0.8.

Therefore the standard strengthened cut is

0.8x1 + 0.4x2 + 1.6x3 + 0.8x4 + 0.48x5 + 0.8x6 ≥ 1. (3.2.38)

Monoidal strengthening applied to the disjunction (3.2.30) and the instance (3.2.35) yields
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the coefficients

β̄3
4 = minmj∈M max

{
1.2+m1

j

0.25
,
1.6+m2

j

0.5
,
−1.2−1.6+2m3

j

2−0.25−0.5

}
= max

{
1.2−1
0.25

, 1.6−1
0.5

, −1.2−1.6+2×2
2−0.25−0.5

}
= 1.2

β̄3
5 = minmj∈M max

{
2.9+m1

j

0.25
,
−0.5+m2

j

0.5
,
−2.9+0.5+2m3

j

2−0.25−0.5

}
= max

{
2.9−3
0.25

, −0.5+1
0.5

, −2.9+0.5+2×2
2−0.25−0.5

}
= 1.28

β̄3
6 = minmj∈M max

{
−0.8+m1

j

0.25
,
2.5+m2

j

0.5
,
0.8−2.9+2m3

j

2−0.25−0.5

}
= max

{−0.8+1
0.25

, 2.5−2
0.5

, 0.8−2.9+2×1
2−0.25−0.5

}
= 1

and therefore the monoidal strengthened cut is

0.8x1 + 0.4x2 + 1.6x3 + 1.2x4 + 1.28x5 + x6 ≥ 1. (3.2.39)

In this case, (3.2.39) is weaker than (3.2.38).
If we apply Theorem 3.2.1 to the disjunction (3.2.30) with k = 3, we obtain the Lopsided

cut β̃3x ≥ 1 where

β̃3
j :=

 min

{
−a1j−a2j+2

2−a10−a20
,minmj∈M

m3
j≥0

max
{

a1j+m1
j

a10
,
a2j+m2

j

a20
,
−a1j−a2j+2m3

j

2−a10−a20

}}
j ∈ J1

αic
j j ∈ J \ J1

Computing these coefficients for the instance (3.2.35) we get

β̃3
4 = min

{−1.2−1.6+2×1
2−0.25−0.5

,max
{

1.2−1
0.25

, 1.6−1
0.5

, −1.2−1.6+2×2
2−0.25−0.5

}}
= −0.64

β̃3
5 = min

{−2.9+0.5+2×1
2−0.25−0.5

,max
{

2.9−3
0.25

, −0.5+1
0.5

, −2.9+0.5+2×2
2−0.25−0.5

}}
= −0.32

β̃3
6 = min

{
0.8−2.5+2×1
2−0.25−0.5

,max
{−0.8+1

0.25
, 2.5−2

0.5
, 0.8−2.5+2×1

2−0.25−0.5

}}
= 0.24.

Therefore the cut β̃3x ≥ 1 is

0.8x1 + 0.4x2 + 1.6x3 − 0.64x4 − 0.32x5 + 0.24x6 ≥ 1. (3.2.40)

The Lopsided cut (3.2.40) strictly dominates both the standard strengthened cut (3.2.38)
and the monoidal stregthened cut (3.2.39).

3.2.3 Strictly weaker disjunctions

So far we only considered cuts derived from disjunctions with redundant terms. The next
example shows that stronger cuts can also be obtained from disjunctions that are strictly
weaker.
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Example Consider the 2-row relaxation

P =
{

(y, x) ∈ R9 :

y1 = 0.25 +0.58x1 +0.1x2 −0.48x3 +0.5x4 −1.5x5 +2.5x6 −7.2x7

y2 = 0.5 +0.29x1 −0.6x2 +0.32x3 +5.8x4 −0.1x5 +3.6x6 +2.6x7

xj ≥ 0, j ∈ J = {1, . . . , 7}
xj ∈ Z, j ∈ J1 = {4, . . . , 7}
yk ∈ {0, 1}, k ∈ {1, 2}

}
.

(3.2.41)
The point (ȳ1, ȳ2, x̄) = (0.25, 0.5, 0̄) satisfies the two equations in P but does not satisfy the
integrality conditions. We generate an intersection cut αicx ≥ 1 from the set S where

S =
{
(y1, y2) ∈ R2 : 2y1 + y2 ≥ 0; 4y1 − y2 ≤ 4; y2 ≤ 1

}
.

The set S is a triangle with vertices q1 = (−1
2
, 1); q2 = (5

4
, 1); q3 = (2

3
,−4

3
). The intersection

cut αicx ≥ 1 is

0.58x1 + 0.4x2 + 0.64x3 + 11.6x4 + 3.1x5 + 7.2x6 + 11.8x7 ≥ 1. (3.2.42)

The coefficients of (3.2.42) are computed as follows:

αic
1 = minµ>0{ 1µ : 1 + µ(1.45) ≥ 0; 0.5 + µ(+2.03) ≤ 4; 0.5 + µ(0.29) ≤ 1}

= 1
1.7241

= 0.58
αic
2 = minµ>0{ 1µ : 1 + µ(−0.4) ≥ 0; 0.5 + µ(1) ≤ 4; 0.5 + µ(−0.6) ≤ 1}

= 1
2.5

= 0.4
αic
3 = minµ>0{ 1µ : 1 + µ(−0.64) ≥ 0; 0.5 + µ(−2.24) ≤ 4; 0.5 + µ(0.32) ≤ 1}

= 1
1.5625

= 0.64
αic
4 = minµ>0{ 1µ : 1 + µ(6.8) ≥ 0; 0.5 + µ(−3.8) ≤ 4; 0.5 + µ(5.8) ≤ 1}

= 1
0.0862

= 11.6
αic
5 = minµ>0{ 1µ : 1 + µ(−3.1) ≥ 0; 0.5 + µ(−5.9) ≤ 4; 0.5 + µ(−0.1) ≤ 1}

= 1
0.3226

= 3.1
αic
6 = minµ>0{ 1µ : 1 + µ(8.6) ≥ 0; 0.5 + µ(6.4) ≤ 4; 0.5 + µ(3.6) ≤ 1}

= 1
0.1389

= 7.2
αic
7 = minµ>0{ 1µ : 1 + µ(−11.8) ≥ 0; 0.5 + µ(−31.4) ≤ 4; 0.5 + µ(2.8) ≤ 1}

= 1
0.0847

= 11.8.

Applying standard strengthening on the coefficients associated to the variables x4, x5, x6, x7
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we get

αstr
4 = min µ>0

p1,p2∈Z
{ 1
µ
: 1 + µ(6.8− 2p1 − p2) ≥ 0; 0.5 + µ(−3.8− 4p1 + p2) ≤ 4;

0.5 + µ(5.8− p2) ≤ 1}
= minµ>0{ 1µ : 1 + µ(6.8 + 0− 6) ≥ 0; 0.5 + µ(−3.8 + 0 + 6) ≤ 4;

0.5 + µ(5.8− 6) ≤ 1} = 1
1.5909

= 0.6286
αstr
5 = min µ>0

p1,p2∈Z
{ 1
µ
: 1 + µ(−3.1− 2p1 − p2) ≥ 0; 0.5 + µ(−5.9− 4p1 + p2) ≤ 4;

0.5 + µ(−0.1− p2) ≤ 1}
= minµ>0{ 1µ : 1 + µ(−3.1 + 4 + 0) ≥ 0; 0.5 + µ(−5.9 + 8 + 0) ≤ 4;

0.5 + µ(−0.1 + 0) ≤ 1} = 1
1.6667

= 0.6
αstr
6 = min µ>0

p1,p2∈Z
{ 1
µ
: 1 + µ(8.6− 2p1 − p2) ≥ 0; 0.5 + µ(6.4− 4p1 + p2) ≤ 4;

0.5 + µ(3.6− p2) ≤ 1}
= minµ>0{ 1µ : 1 + µ(8.6− 4− 4) ≥ 0; 0.5 + µ(6.4− 8 + 4) ≤ 4;

0.5 + µ(3.6− 4) ≤ 1} = 1
1.4583

= 0.6857
αstr
7 = min µ>0

p1,p2∈Z
{ 1
µ
: 1 + µ(−11.8− 2p1 − p2) ≥ 0; 0.5 + µ(−31.4− 4p1 + p2) ≤ 4;

0.5 + µ(2.6− p2) ≤ 1}
= minµ>0{ 1µ : 1 + µ(−11.8 + 14− 3) ≥ 0; 0.5 + µ(−31.4 + 28 + 3) ≤ 4;

0.5 + µ(2.6− 3) ≤ 1} = 1
1.25

= 0.8.

Thus, the standard strengthened cut αstrx ≥ 1 is

0.58x1 + 0.4x2 + 0.64x3 + 0.6286x4 + 0.6x5 + 0.6857x6 + 0.8x7 ≥ 1. (3.2.43)

The cut (3.2.42) can be obtained from the disjunction

(2y1 + y2 ≤ 0) ∨ (4y1 − y2 ≥ 4) ∨ (y2 ≥ 1) . (3.2.44)

Applying monoidal strengthening to (3.2.44) we get the cut β̄x ≥ 1 :

0.58x1 + 0.4x2 + 0.64x3 + 2.2x4 + 0.1x5 + 1.8286x6 + 1.0286x7 ≥ 1. (3.2.45)

Consider now the disjunction

(−2y1 − y2 ≥ 0) ∨ (4y1 − y2 ≥ 4) ∨ (y2 ≥ 1) ∨ (−y2 ≥ 1) (3.2.46)

obtained from (3.2.44) by adding the term (y2 ≤ −1). The disjunction (3.2.46) is strictly
weaker than (3.2.44) since (y1, y2) = (0.7,−1) does not satisfy (3.2.44) but satisfies (3.2.46).
In the nonbasic space, we can rewrite (3.2.46) as

(
∑

j∈J1(2a1j + a2j)xj +
∑

j∈J\J1(2a1j + a2j)xj ≥ 2a10 + a20) ∨
(
∑

j∈J1(−4a1j + a2j)xj +
∑

j∈J\J1(−4a1j + a2j)xj ≥ 4− 4a10 + a20) ∨
(
∑

j∈J1(−a2j)xj +
∑

j∈J\J1(−a2j)xj ≥ 1− a20) ∨
(
∑

j∈J1(a2j)xj +
∑

j∈J\J1(a2j)xj ≥ 1 + a20)

(3.2.47)
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Applying monoidal cut strengthening to (3.2.47) we derive the cut

0.58x1 + 0.4x2 + 0.64x3 + 0.3429x4 + 0.1x5 + 0.4x6 − 0.2x7 ≥ 1. (3.2.48)

which strictly dominates both cuts (3.2.43) and (3.2.45). Moreover, it can be shown that
(3.2.48) is not dominated by any combination of the cuts (3.2.43), (3.2.45), the 2 GMI cuts
derived from (3.2.41) and the 3 Lopsided cuts derived from the disjunction (3.2.44).

The detailed computation of the cut (3.2.48) is hereby included. The quantities

b1 = 2a10 + a20 − 3
b2 = −4a10 + a20 − 1
b3 = −a20
b4 = −a20 − 1

are valid lower bounds for the left hand side term of each disjunct in (3.2.47). Therefore by
the monoidal strengthening proposition we have that the disjunction

(
∑

j∈J1(2a1j + a2j + 3m1
j)xj +

∑
j∈J\J1(2a1j + a2j)xj ≥ 2a10 + a20) ∨

(
∑

j∈J1(−4a1j + a2j + 5m2
j)xj +

∑
j∈J\J1(−4a1j + a2j)xj ≥ 4− 4a10 + a20) ∨

(
∑

j∈J1(−a2j +m3
j)xj +

∑
j∈J\J1(−a2j)xj ≥ 1− a20) ∨

(
∑

j∈J1(a2j + 2m4
j)xj +

∑
j∈J\J1(a2j)xj ≥ 1 + a20)

is valid for (3.2.41) for any m ∈ M , where M = {m ∈ Z4 :
∑4

k=1 mi ≥ 0}. The monoidal
strengthened cut β̄′x ≥ 1 from (3.2.47) has coefficients

β̄′
4 = minm∈M max

{
−6.8+3m1

4

1
,
−3.8+5m2

4

3.5
,
5.8+m3

4

0.5
,
−5.8+2m4

4

1.5

}
= max

{
−6.8+3(2)

1
, −3.8+5(1)

3.5
, 5.8+1(−6)

0.5
, −5.8+2(3)

1.5

}
= 0.3429

β̄′
5 = minm∈M max

{
3.1+3m1

5

1
,
−5.9+5m2

5

3.5
,
−0.1+m3

5

0.5
,
0.1+2m4

5

1.5

}
= max

{
3.1+3(−1)

1
, −5.9+5(1)

3.5
, −0.1+1(0)

0.5
, 0.1+2(0)

1.5

}
= 0.1

β̄′
6 = minm∈M max

{
−8.6+3m1

6

1
,
6.4+5m2

6

3.5
,
3.6+m3

6

0.5
,
−3.6+2m4

6

1.5

}
= max

{
−8.6+3(3)

1
, 6.4+5(−1)

3.5
, 3.6+1(−4)

0.5
, −3.6+2(2)

1.5

}
= 0.4

β̄′
7 = minm∈M max

{
11.8+3m1

7

1
,
−31.4+5m2

7

3.5
,
2.6+m3

7

0.5
,
−2.6+2m4

7

1.5

}
= max

{
11.8+3(−4)

1
, −31.4+5(6)

3.5
, 2.6+1(−3)

0.5
, −2.6+2(1)

1.5

}
= −0.2.
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[21] Borozan, V., Cornuéjols, G., Minimal valid inequalities for integer constraints. Mathe-
matics of Operations Resarch 34, 2009.

[22] Boyd, S., Vandenberghe, L., Convex Optimization. Cambridge University Press, 2004.

[23] Burer, S., Letchford, A., On Non-Convex Quadratic Programming with Box Con-
straints, SIAM Journal of Optimization 20, 2009.

[24] COmputational INfrastructure for Operations Research (COIN-OR).
http://www.coin-or.org

[25] Cook, W., Kannan, R., Schrijver,A., Chvatal Closures for Mixed Integer Programming
Problems, Mathematical Programming 47, 1990.
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[58] Toh, K. C., Todd, M. J., Tütüncü, R. H., SDPT3: AMATLAB software for semidefinite-
quadratic-linear programming. Available at
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

[59] Vandenberghe, L., Boyd, S., Semidefinite Programming. SIAM Review 38 (1), 1996.

[60] Vandenbussche, D., Nemhauser, G. L., A branch-and-cut algorithm for nonconvex
quadratic programs with box constraints. Mathematical Programming 102(3), 2005.

118



[61] Wolkowicz, H., Saigal, R., Vandenberghe, L., Handbook of Semidefinite Programming:
Theory, Algorithms, and Applications. Springer, 2000.

119


